首页

【走向高考】2022届高中数学二轮复习 专题4 立体几何(第2讲)课时作业 新人教A版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

剩余9页未读,查看更多内容需下载

【走向高考】2022届高中数学二轮复习专题4立体几何(第2讲)课时作业新人教A版一、选择题1.(2022·德阳市二诊)设m、n是两条不同的直线,α、β是两个不同的平面,若已知m⊥n,m⊥α,则“n⊥β”是“α⊥β”的(  )A.充分非必要条件  B.必要非充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析] ⇒α⊥β.⇒/n⊥β.2.(2022·重庆理,7)某几何体的三视图如图所示,则该几何体的表面积为(  )A.54B.60C.66D.72[答案] B[解析] 如图所示该几何体是将一个直三棱柱截去一个三棱锥得到的,直三棱柱底面是直角三角形,两直角边长为3和4,柱高为5,∵EF∥AC,AC⊥平面ABDF,∴EF⊥平面ABDF,∴EF⊥DF,在直角梯形ABDF中,易得DF=5,故其表面积为S=SRt△ABC+S矩形ACEF+S梯形ABDF+S梯形BCED+SRt△DEF=+3×5+++=60.3.(文)设α、β、γ是三个互不重合的平面,m、n为两条不同的直线.给出下列命题:①若n∥m,m⊂α,则n∥α;②若α∥β,n⊄β,n∥α,则n∥β;③若β⊥α,γ⊥α,则β∥γ;④若n∥m,n⊥α,m⊥β,则α∥β.其中真命题是(  )-11-\nA.①和②B.①和③C.②和④D.③和④[答案] C[解析] 若n∥m,m⊂α,则n∥α或n⊂α,即命题①不正确,排除A、B;若α∥β,n⊄β,n∥α,则n∥β,则命题②正确,排除D,故应选C.(理)已知α、β是两个不同的平面,m、n是两条不重合的直线,下列命题中正确的是(  )A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m⊥n,则n∥αC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥β[答案] C[解析] 对于选项A,m,n有可能平行也有可能异面;对于选项B,n有可能在平面α内,所以n与平面α不一定平行;对于选项D,m与β的位置关系可能是m⊂β,m∥β,也可能m与β相交.由n⊥β,α⊥β得,n∥α或n⊂α,又m⊥α,∴m⊥n,故C正确.4.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,△AED、△EBF、△FCD分别沿DE、EF、FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为(  )A.B.C.D.[答案] B[解析] 由条件知A′E、A′F、A′D两两互相垂直,以A′为一个顶点,A′E、A′F、A′D为三条棱构造长方体,则长方体的对角线为四面体外接球的直径,∵A′E=A′F=1,A′D=2,∴(2R)2=12+12+22=6,∴R=.5.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中(  )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直[答案] B[解析] ①过A、C作BD的垂线AE、CF,∵AB与BC不相等,∴E与F不重合,在空间图(2)中,若AC⊥BD,∵AC∩AE=A,∴BD⊥平面ACE,∴BD⊥CE,这样在平面BCD内,过点C有两条直线CE、CF都与BD垂直矛盾,∴A错;②若AB⊥CD,∵AB⊥AD,∴AB⊥平面ACD,∴AB⊥AC,∵AB<BC,∴存在这样的三角形ABC,AB⊥AC,AB=AC,∴B选项正确,∴选项D错;③-11-\n若AD⊥BC,又CD⊥BC,∴BC⊥平面ACD,∴BC⊥AC,∵BC>AB,这样的△ABC不存在,∴C错误.6.(文)已知正四棱柱ABCD-A1B1C1D1,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为(  )A.2         B.C.D.1[答案] D[解析] 本题考查了正四棱柱的性质,点到直线距离的求解.连接AC、BD,AC∩BD=O,连接EO,则EO∥AC1.则点C到平面BDE的距离等于AC1到平面BDE的距离,过C作CH⊥OE于H,CH为所求.在△EOC中,EC=,CO=,所以CH=1.本题解答体现了转化与化归的思想,注意等积法的使用.(理)已知四棱锥P-ABCD的侧棱长与底面边长都相等,点E是侧棱PB的中点,则异面直线AE与PD所成角的余弦值为(  )A.B.C.D.[答案] C[解析] 设AC与BD的交点为O,∵棱锥的各棱长都相等,∴O为BD中点,∴EO∥PD,∴∠AEO为异面直线AE与PD所成的角,设棱长为1,则AO=,EO=,AE=,∵AO2+EO2=AE2,∴cos∠AEO==.二、填空题7.a、b表示直线,α、β、γ表示平面.①若α∩β=a,b⊂α,a⊥b,则α⊥β;②若a⊂α,a垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩γ=a,β∩γ=b,则a⊥b;④若a不垂直于平面α,则a不可能垂直于平面α内无数条直线;⑤若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β.其中为真命题的是__________.[答案] ②⑤[解析] 对①可举反例如图,需b⊥β才能推出α⊥β.对③可举反例说明,当γ不与α,β的交线垂直时,即可得到a,b不垂直;④-11-\n对a只需垂直于α内一条直线便可以垂直α内无数条与之平行的直线.所以只有②⑤是正确的.8.已知三棱柱ABC-A1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12π,则该三棱柱的体积为________.[答案] 3[解析] 4πR2=12π,∴R=,△ABC外接圆半径r=,∴柱高h=2=2,∴体积V=×()2×2=3.9.已知正方体ABCD-A1B1C1D1的棱长为1,点P是线段A1C1上的动点,则四棱锥P-ABCD的外接球半径R的取值范围是______________.[答案] [解析] 当P为A1C1的中点时,设球半径为R,球心到底面ABCD距离为h,则,∴R=,当P与A1(或C1)重合时,外接球就是正方体的外接球,R=,∴R∈[,].三、解答题10.(文)(2022·江苏,16)如图,在三棱锥P-ABC中,D、E、F分别为棱PC、AC、AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.[解析] (1)由于D、E分别是棱PC、AC的中点,则有PA∥DE,又PA⊄平面DEF,DE⊂平面DEF,所以PA∥平面DEF.(2)由(1)PA∥DE,又PA⊥AC,所以DE⊥AC,又F是AB中点,所以DE=PA=3,EF=BC=4,又DF=5,所以DE2+EF2=DF2,所以DE⊥EF,EF、AC是平面ABC内两条相交直线,所以DE⊥平面ABC,又DE⊂平面BDE,所以平面BDE⊥平面ABC.(理)(2022·内江模拟)已知ABCD是矩形,AD=4,AB=2,E、F分别是AB、BC的中点,PA⊥平面ABCD.-11-\n(1)求证:PF⊥DF;(2)若PD与平面ABCD所成角为30°,在PA上找一点G,使EG∥平面PFD,并求出AG的长.[解析] (1)证明:连接AF,∵PA⊥平面ABCD,且DF⊂平面ABCD,∴DF⊥PA,又F为BC中点,BC=4,AB=2,∴BF=BA,∴∠AFB=45°,同理∠DFC=45°,∴∠AFD=90°,即DF⊥AF,∴DF⊥平面PAF.又PF⊂平面PAF,∴PF⊥DF.(2)∵PA⊥平面ABCD,∴∠PDA就是PD与平面ABC所成角.∴∠PDA=30°,∴PA=.延长DF交AB延长线于H,连接PH,则平面PDF就是平面PHD,在平面PAH内,过E作EG∥PH交PA于G.∵EG∥PH,PH⊂平面PHD,∴EG∥平面PHD,即EG∥平面PDF,故点G为所求.∴==,∴AG=.一、选择题11.(文)(2022·吉大附中模拟)已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是(  )A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥n-11-\nC.m⊥α,m⊥n⇒n∥αD.m⊂α,n⊂α,m∥β,n∥β⇒α∥β[答案] A[解析] 由线面垂直的性质定理知A正确;如图1知,当m1⊂β,m1∩n=A时满足B的条件,但m与n不平行;当m⊥α,m⊥n时,可能有n⊂α;如图2知,m∥n∥l,α∩β=l时满足D的条件,由此知D错误.(理)设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①⇒β∥γ     ②⇒m⊥β③⇒α⊥β④⇒m∥α其中,真命题是(  )A.①④  B.②③   C.①③  D.②④[答案] C[解析] ①正确,平行于同一个平面的两个平面平行;②错误,由线面平行、垂直定理知:m不一定垂直于β;③正确,由线面平行,垂直关系判断正确;④错误,m也可能在α内.综上所述,正确的命题是①③,故选C.12.(文)(2022·西城区模拟)如图,正方体ABCD-A1B1C1D1中,E是棱B1C1的中点,动点P在底面ABCD内,且PA1=A1E,则点P运动形成的图形是(  )A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分[答案] B[解析] |AP|===|B1E|(定值),故点P在底面ABCD内运动形成的图形是圆弧.(理)(2022·保定市模拟)正方体ABCD-A1B1C1D1中,M为CC1的中点,P在底面ABCD内运动,且满足∠DPD1=∠CPM,则点P的轨迹为(  )-11-\nA.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分[答案] A[解析] 由∠DPD1=∠CPM得==,∴=2,在平面ABCD内,以D为原点,DA、DC分别为x轴、y轴建立平面直角坐标系,设DC=1,P(x,y),∵PD=2PC,∴=2,整理得x2+(y-)2=,所以,轨迹为圆的一部分,故选A.13.(2022·苍南求知中学月考)已知A、B是两个不同的点,m、n是两条不重合的直线,α、β是两个不重合的平面,给出下列4个命题:①若m∩n=A,A∈α,B∈m,则B∈α;②若m⊂α,A∈m,则A∈α;③若m⊂α,m⊥β,则α⊥β;④若m⊂α,n⊂β,m∥n,则α∥β,其中真命题为(  )A.①③B.①④C.②③D.②④[答案] C[解析] ②∵m⊂α,∴m上的点都在平面α内,又A∈m,∴A∈α,∴②对;由二面垂直的判定定理知,③正确.二、解答题14.(文)如图,在直三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点.且CC1=AC.(1)求证:CN∥平面AMB1;(2)求证:B1M⊥平面AMG.[证明] (1)如图取线段AB1的中点P,连接NP、MP,∵CM綊BB1,NP綊BB1,∴CM綊NP,∴四边形CNPM是平行四边形.∴CN∥MP.∵CN⊄平面AMB1,MP⊂平面AMB1,∴CN∥平面AMB1.(2)∵CC1⊥平面ABC,∴平面CC1B1B⊥平面ABC,∵AG⊥BC,∴AG⊥平面CC1B1B,-11-\n∴B1M⊥AG.∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1C1,设AC=2a,则CC1=2a,在Rt△MCA中,AM==a.在Rt△B1C1M中,B1M==a.∵BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,∴AB1===2a.∵AM2+B1M2=AB,∴B1M⊥AM.又∵AG∩AM=A,∴B1M⊥平面AMG.(理)如图,在三棱柱ABC—A1B1C1中,AA1⊥平面ABC,AB⊥BC,且AB=BC=2,点N为B1C1的中点,点P在棱A1C1上运动.(1)试问点P在何处时,AB∥平面PNC,并证明你的结论;(2)在(1)的条件下,若AA1<AB,直线B1C与平面BCP所成角的正弦值为,求二面角A-BP-C的大小.[解析] (1)当点P为A1C1的中点时,AB∥平面PNC.∵P为A1C1的中点,N为B1C1的中点,∴PN∥A1B1∥AB∵AB⊄平面PNC,PN⊂平面PNC,∴AB∥平面PNC.(2)设AA1=m,则m<2,∵AB、BC、BB,两两垂直,∴以B为原点,BA、BC,BB1为x轴、y轴,z轴建立空间直角坐标系,则A(2,0,0),C(0,2,0),B1(0,0,m),A1(2,0,m),C1(0,2,m),∴P(1,1,m),设平面BCP的法向量n=(x,y,z),则由n·=0,n·=0,解得y=0,x=-mz,令z=0,则n=(-m,0,-1),又=(0,2,-m),直线B1C与平面BCP所成角正弦值为,∴=,解之得m=1∴n=(-1,0,1)易求得平面ABP的法向量n1=(0,-1,1)cosα==,设二面角的平面角为θ,则cosθ=-,∴θ=120°.-11-\n15.如图1,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的正(主)视图和侧(左)视图,它们是腰长为6cm的全等的等腰直角三角.(1)根据图2所给的正(主)视图、侧(左)视图画出相应的俯视图,并求出该俯视图的面积;(2)图3中,E为棱PB上的点,F为底面对角线AC上的点,且=,求证:EF∥平面PDA.[解析] (1)该四棱锥相应的俯视图为内含对角线、边长为6cm的正方形(如图).其面积为6×6=36cm2.(2)连接BF,延长BF与AD交于G,连接PG.如图,在正方形ABCD中,=,又因为=,所以=,故在△BGP中,EF∥PG,又EF⊄平面PDA,PG⊂平面PDA,所以EF∥平面PDA.16.(文)(2022·辽宁文,18)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.-11-\n(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.[解析] (1)由AB是圆O的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.(2)连OG并延长交AC于M,连接QM、QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC,又O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC,所以平面QMO∥平面PBC,因为QG⊂平面QMO.所以QG∥平面PBC.(理)(2022·天津六校联考)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC的中点,PA=PD=2,BC=AD=1,CD=.-11-\n(1)求证:PE⊥平面ABCD;(2)求直线BM与平面ABCD所成角的正切值;(3)求直线BM与CD所成角的余弦值.[解析] (1)∵PA=PD,E为AD的中点,∴PE⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PE⊥平面ABCD.(2)连接EC,取EC中点H,连接MH,HB,∵M是PC的中点,H是EC的中点,∴MH∥PE,由(1)知PE⊥平面ABCD,∴MH⊥平面ABCD,∴HB是BM在平面ABCD内的射影,∴∠MBH即为BM与平面ABCD所成的角.∵AD∥BC,BC=AD,E为AD的中点,∠ADC=90°,∴四边形BCDE为矩形,又CD=,∴EC=2,HB=EC=1,又∵MH=PE=,∴△MHB中,tan∠MBH==,∴直线BM与平面ABCD所成角的正切值为.(3)由(2)知CD∥BE,∴直线BM与CD所成角即为直线BM与BE所成角,连接ME,在Rt△MHE中,ME=,在Rt△MHB中,BM=,又BE=CD=,∴△MEB中,cos∠MBE===,∴直线BM与CD所成角的余弦值为.-11-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:13:10 页数:11
价格:¥3 大小:529.13 KB
文章作者:U-336598

推荐特供

MORE