首页

全国通用2022版高考数学考前三个月复习冲刺专题6第27练空间向量解决立体几何问题两妙招理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/20

2/20

剩余18页未读,查看更多内容需下载

第27练 空间向量解决立体几何问题两妙招——“选基底”与“建系”[题型分析·高考展望] 向量作为一个工具,其用途是非常广泛的,可以解决现高中阶段立体几何中的大部分问题,不管是证明位置关系还是求解问题.而向量中最主要的两个手段就是选基底与建立空间直角坐标系.在高考中,用向量解决立体几何解答题,几乎成了必然的选择.常考题型精析题型一 选好基底解决立体几何问题例1 如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM夹角的余弦值.       20\n点评 对于不易建立直角坐标系的题目,选择好“基底”也可使问题顺利解决.“基底”就是一个坐标系,选择时,作为基底的向量一般为已知向量,且能进行运算,还需能将其他向量线性表示.变式训练1 已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,(1)求证:E、F、G、H四点共面;(2)求证:BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有=(+++).      题型二 建立空间直角坐标系解决立体几何问题例2 (2022·湖南)如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;20\n(2)若PQ∥平面ABB1A1,二面角PQDA的余弦值为,求四面体ADPQ的体积.   点评 (1)建立空间直角坐标系前应先观察题目中的垂直关系,最好借助已知的垂直关系建系.(2)利用题目中的数量关系,确定定点的坐标,动点的坐标可利用共线关系(=λa),设出动点坐标.(3)要掌握利用法向量求线面角、二面角、点到面的距离的公式法.变式训练2 如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2.(1)求证:EF∥平面PAB;(2)求证:平面PAD⊥平面PDC.     20\n 高考题型精练1.(2022·北京西城区模拟)已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x,y的值分别为(  )A.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=12.已知平面ABC,点M是空间任意一点,点M满足条件=++,则直线AM(  )A.与平面ABC平行B.是平面ABC的斜线C.是平面ABC的垂线D.在平面ABC内3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是(  )A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)4.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于(  )A.B.C.D.5.如图,在长方体ABCD—A1B1C1D1中,AB=2,AA1=,AD=2,P为C1D1的中点,M为BC的中点.则AM与PM所成的角为(  )A.60°B.45°C.90°D.以上都不正确6.在正方体ABCD—A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足=λ的实数λ有________个.20\n7.如图,在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是________.8.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.      20\n9.(2022·课标全国Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.       10.(2022·广州模拟)如图所示,在直三棱柱ABC-A1B1C1中,CA=4,CB=4,CC1=2,∠ACB=90°,点M在线段A1B1上.(1)若A1M=3MB1,求异面直线AM和A1C所成角的余弦值;20\n(2)若直线AM与平面ABC1所成角为30°,试确定点M的位置.       11.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.     20\n12.(2022·天津)如图,在四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(1)求证:MN∥平面ABCD;(2)求二面角D1-AC-B1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.       20\n答案精析第27练 空间向量解决立体几何问题两妙招——“选基底”与“建系”常考题型精析例1 (1)证明 设=p,=q,=r.由题意可知:|p|=|q|=|r|=a,且p、q、r三向量两两夹角均为60°.=-=(+)-=(q+r-p),∴·=(q+r-p)·p=(q·p+r·p-p2)=(a2·cos60°+a2·cos60°-a2)=0.∴MN⊥AB,同理可证MN⊥CD.(2)解 由(1)可知=(q+r-p),∴||2=2=(q+r-p)2=[q2+r2+p2+2(q·r-p·q-r·p)]=[a2+a2+a2+2(--)]=·2a2=.∴||=a,∴MN的长为a.(3)解 设向量与的夹角为θ.∵=(+)=(q+r),=-=q-p,20\n∴·=(q+r)·(q-p)=(q2-q·p+r·q-r·p)=(a2-a2·cos60°+a2·cos60°-a2·cos60°)=(a2-+-)=.又∵||=||=a,∴·=||·||·cosθ=a·a·cosθ=.∴cosθ=,∴向量与的夹角的余弦值为,从而异面直线AN与CM夹角的余弦值为.变式训练1 证明 (1)连接BG,则=+=+(+)=++=+,由共面向量定理的推论知:E、F、G、H四点共面.(2)因为=-=-=(-)=,所以EH∥BD.又EH⊂平面EFGH,BD⊄平面EFGH,所以BD∥平面EFGH.(3)找一点O,并连接OM,OA,OB,OC,OD,OE,OG.由(2)知=,同理=,20\n所以=,即EH綊FG,所以四边形EFGH是平行四边形.所以EG,FH交于一点M且被M平分.故=(+)=+=+=(+++).例2 解 由题设知,AA1,AB,AD两两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6.(1)证明 若P是DD1的中点,则P,=,又=(3,0,6),于是·=18-18=0,所以⊥,即AB1⊥PQ.(2)由题设知,=(6,m-6,0),=(0,-3,6)是平面PQD内的两个不共线向量.设n1=(x,y,z)是平面PQD的一个法向量,则 即取y=6,得n1=(6-m,6,3).又平面AQD的一个法向量是n2=(0,0,1),所以cos〈n1,n2〉===.而二面角PQDA的余弦值为,因此=,解得m=4,m=8(舍去),此时Q(6,4,0).设=λ(0<λ≤1),而=(0,-3,6),由此得点P(0,6-3λ,6λ),所以=(6,3λ-2,-6λ).20\n因为PQ∥平面ABB1A1,且平面ABB1A1的法向量是n3=(0,1,0),所以·n3=0,即3λ-2=0,亦即λ=,从而P(0,4,4).于是,将四面体ADPQ视为以△ADQ为底面的三棱锥PADQ,则其高h=4.故四面体ADPQ的体积V=S△ADQ·h=××6×6×4=24.变式训练2 证明 (1)以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),∴E(,1,),F(0,1,),=(-,0,0),=(1,0,-1),=(0,2,-1),=(0,0,1),=(0,2,0),=(1,0,0),=(1,0,0).∵=-,∴∥,即EF∥AB,又AB⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB.(2)∵·=(0,0,1)·(1,0,0)=0,·=(0,2,0)·(1,0,0)=0,∴⊥,⊥,即AP⊥DC,AD⊥DC.又AP∩AD=A,∴DC⊥平面PAD.∵DC⊂平面PDC,∴平面PAD⊥平面PDC.高考题型精练1.C[如图,=+=+=+(+).]20\n2.D[由已知得M、A、B、C四点共面.所以AM在平面ABC内,选D.]3.A[逐一验证法,对于选项A,=(1,4,1),∴·n=6-12+6=0,∴⊥n,∴点P在平面α内,同理可验证其他三个点不在平面α内.]4.D[由题意得c=ta+μb=(2t-μ,-t+4μ,3t-2μ),∴∴]5.C[以D点为原点,分别以DA,DC,DD1所在直线为x,y,z轴,建立如图所示的空间直角坐标系,依题意,可得,D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),M(,2,0).∴=(,1,-),=(-,2,0),∴·=(,1,-)·(-,2,0)=0,即⊥,∴AM⊥PM.]6.2解析 建立如图的坐标系,设正方体的边长为2,则P(x,y,2),O(1,1,0),∴OP的中点坐标为,又知D1(0,0,2),∴Q(x+1,y+1,0),而Q在MN上,∴xQ+yQ=3,∴x+y=1,即点P坐标满足x+y=1.∴有2个符合题意的点P,即对应有2个λ.7.平行20\n解析 ∵正方体棱长为a,A1M=AN=,∴=,=,∴=++=++=(+)++(+)=+.又∵是平面B1BCC1的一个法向量,∴·=·=0,∴⊥.又∵MN⊄平面B1BCC1,∴MN∥平面B1BCC1.8.(1)证明 以A为原点,,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=,=(a,0,1),=.∵·=-×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)解 假设在棱AA1上存在一点P(0,0,z0).使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n⊥,n⊥,得20\n取x=1,得平面B1AE的一个法向量n=.要使DP∥平面B1AE,只要n⊥,有-az0=0,解得z0=.又DP⊄平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=.9.(1)证明 连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)解 因为PA⊥平面ABCD,且四边形ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,的方向为x轴的正方向,的方向为y轴的正方向,的方向为z轴的正方向,||为单位长,建立空间直角坐标系,则D(0,,0),E(0,,),=(0,,).设B(m,0,0)(m>0),则C(m,,0),=(m,,0).设n1=(x,y,z)为平面ACE的法向量,则即可取n1=(,-1,).又n2=(1,0,0)为平面DAE的法向量,由题设知|cos〈n1,n2〉|=,20\n即=,解得m=.因为E为PD的中点,所以三棱锥E-ACD的高为,三棱锥E-ACD的体积V=××××=.10.解 方法一 (坐标法)以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(4,0,0),A1(4,0,2),B1(0,4,2).(1)因为A1M=3MB1,所以M(1,3,2).所以=(4,0,2),=(-3,3,2).所以cos〈,〉===-.所以异面直线AM和A1C所成角的余弦值为.(2)由A(4,0,0),B(0,4,0),C1(0,0,2),知=(-4,4,0),=(-4,0,2).设平面ABC1的法向量为n=(a,b,c),由得令a=1,则b=1,c=,所以平面ABC1的一个法向量为n=(1,1,).因为点M在线段A1B1上,所以可设M(x,4-x,2),20\n所以=(x-4,4-x,2).因为直线AM与平面ABC1所成角为30°,所以|cos〈n,〉|=sin30°=.由|n·|=|n||||cos〈n,〉|,得|1·(x-4)+1·(4-x)+·2|=2··,解得x=2或x=6.因为点M在线段A1B1上,所以x=2,即点M(2,2,2)是线段A1B1的中点.方法二 (选基底法)由题意CC1⊥CA,CA⊥CB,CC1⊥CB取,,作为一组基底,则有||=||=4,||=2,且·=·=·=0.(1)由=3,则===-,∴=+=+-,且||=,=--,且||=2,∴·=4,∴cos〈,〉==.即异面直线AM与A1C所成角的余弦值为.(2)设A1M=λA1B1,则=+λ-λ.又=-,=-,设面ABC1的法向量为n=x+y+z,20\n则n·=8z-16x=0,n·=16y-16x=0,不妨取x=y=1,z=2,则n=++2且|n|=8,||=,·n=16,又AM与面ABC1所成的角为30°,则应有==,得λ=,即M为A1B1的中点.11.(1)证明 如图,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设AD=a,则D(0,0,0)、A(a,0,0)、B(a,a,0)、C(0,a,0)、E、P(0,0,a)、F.=,=(0,a,0).故·=0,∴⊥,即EF⊥CD.(2)解 设G(x,0,z),则=,若使GF⊥平面PCB,则由·=·(a,0,0)=a=0,得x=;由·=·(0,-a,a)20\n=+a=0,得z=0.∴G点坐标为,即G点为AD的中点.12.解 如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2),又因为M,N分别为B1C和D1D的中点,得M,N(1,-2,1).(1)证明 依题意,可得n=(0,0,1)为平面ABCD的一个法向量,=,由此可得·n=0,又因为直线MN⊄平面ABCD,所以MN∥平面ABCD.(2)解 =(1,-2,2),=(2,0,0),设n1=(x,y,z)为平面ACD1的法向量,则即不妨设z=1,可得n1=(0,1,1).设n2=(x,y,z)为平面ACB1的法向量,则 又=(0,1,2),得不妨设z=1,可得n2=(0,-2,1).因此有cos〈n1,n2〉==-,于是sin〈n1,n2〉=.所以,二面角D1ACB1的正弦值为.(3)解 依题意,可设=λ,其中λ∈[0,1],则E(0,λ,2),从而=(-1,λ+2,1),又n=(0,0,1)为平面ABCD的一个法向量,由已知,得cos〈,n〉===,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=-2,所以,线段A1E的长为-2.20\n20

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:55:36 页数:20
价格:¥3 大小:400.89 KB
文章作者:U-336598

推荐特供

MORE