首页

全国通用2022版高考数学考前三个月复习冲刺专题6第28练“空间角”攻略理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

剩余20页未读,查看更多内容需下载

第28练 “空间角”攻略[题型分析·高考展望] 空间角包括异面直线所成的角,线面角以及二面角,在高考中频繁出现,也是高考立体几何题目中的难点所在.掌握好本节内容:首先要理解这些角的概念,其次要弄清这些角的范围,最后再求解这些角.在未来的高考中,空间角将是高考考查的重点,借助向量求空间角,将是解决这类题目的主要方法.常考题型精析题型一 异面直线所成的角例1 在棱长为a的正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成的角.      点评 (1)异面直线所成的角的范围是(0,].求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决.具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角.(2)如果题目条件易建立空间坐标系,可以借助空间向量来求异面直线所成角:设异面直线l1,22\nl2的方向向量分别为m1,m2,则l1与l2所成的角θ满足cosθ=|cos〈m1,m2〉|.变式训练1 (2022·课标全国Ⅱ)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  )A.B.C.D.题型二 直线与平面所成的角例2 (2022·课标全国Ⅱ)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.       点评 (1)求直线l与平面α所成的角,先确定l在α上的射影,在l上取点作α22\n的垂线,或观察原图中是否存在这样的线,或是否存在过l上一点与α垂直的面.(2)找到线面角、作出说明,并通过解三角形求之.(3)利用向量求线面角:设直线l的方向向量和平面α的法向量分别为m,n,则直线l与平面α所成角θ满足sinθ=|cos〈m,n〉|,θ∈.变式训练2 如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.        题型三 二面角22\n例3 (2022·山东)如图,在三棱台DEF—ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.       点评 (1)二面角的范围是(0,π],解题时要注意图形的位置和题目的要求.作二面角的平面角常有三种方法.22\n①棱上一点双垂线法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;②面上一点三垂线法:自二面角的一个面上一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;③空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.(2)用向量法求二面角的大小①如图(1),AB、CD是二面角α—l—β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.(2)如图(2)(3),n1,n2分别是二面角α—l—β的两个半平面α,β的法向量,则二面角的大小θ满足cosθ=cos〈n1,n2〉或-cos〈n1,n2〉.变式训练3 (2022·安徽)如图所示,在多面体A1B1D1ABCD,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角E—A1D—B1的余弦值.   高考题型精练1.(2022·浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD22\n,所成二面角A′-CD-B的平面角为α,则(  )A.∠A′DB≤α   B.∠A′DB≥αC.∠A′CB≤α   D.∠A′CB≥α2.(2022·北京朝阳区模拟)在正方体ABCD—A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为(  )A.B.C.D.3.(2022·大纲全国)已知二面角α-l-β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为(  )A.B.C.D.4.(2022·四川)如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(  )A.[,1]B.[,1]C.[,]D.[,1]5.如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是________.6.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线22\nBC与平面PAC所成的角是________.7.(2022·四川)三棱锥A-BCD及其侧(左)视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.        8.(2022·课标全国Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.22\n(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.         9.(2022·江苏)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD22\n为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.    10.(2022·北京)如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.  22\n答案精析第28练 “空间角”攻略常考题型精析例1 解 方法一 因为=+,=+,所以·=(+)·(+)=·+·+·+·.因为AB⊥BC,BB1⊥AB,BB1⊥BC,所以·=0,·=0,·=0,·=-a2.所以·=-a2.又·=||·||·cos〈,〉,cos〈,〉==-.所以〈,〉=120°.所以异面直线BA1与AC所成的角为60°.方法二 连接A1C1,BC1,则由条件可知A1C1∥AC,从而BA1与AC所成的角即为BA1与A1C1所成的角,由于该几何体为边长为a的正方体,于是△A1BC1为正三角形,∠BA1C1=60°,从而所求异面直线BA1与AC所成的角为60°.方法三 由于该几何体为正方体,所以DA,DC,DD1两两垂直且长度均为a,22\n于是以D为坐标原点,,,分别为x,y,z轴的正方向建立如图所示的空间直角坐标系,于是有A(a,0,0),C(0,a,0),A1(a,0,a),B(a,a,0),从而=(-a,a,0),=(0,-a,a),且||=||=a,·=-a2,∴cos〈,〉==-,即〈,〉=120°,所以所求异面直线BA1与AC所成角为60°.变式训练1 C[由于∠BCA=90°,三棱柱为直三棱柱,且BC=CA=CC1,可将三棱柱补成正方体.建立如图所示空间直角坐标系.设正方体棱长为2,则可得A(0,0,0),B(2,2,0),M(1,1,2),N(0,1,2),∴=(1,1,2)-(2,2,0)=(-1,-1,2),=(0,1,2).∴cos〈,〉====.]例2 解 (1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即22\n所以可取n=(0,4,3).又=(-10,4,8),故|cos〈n,〉|==.所以AF与平面EHGF所成角的正弦值为.变式训练2 (1)证明 以H为原点,HA,HB,HP所在直线分别为x,y,z轴,线段HA的长为单位长度,建立空间直角坐标系(如图),则A(1,0,0),B(0,1,0).设C(m,0,0),P(0,0,n)(m<0,n>0),则D(0,m,0),E.可得=,=(m,-1,0).因为·=-+0=0,所以PE⊥BC.(2)解 由已知条件可得m=-,n=1,故C,D,E,P(0,0,1).设n=(x,y,z)为平面PEH的法向量,则即因此可以取n=(1,,0).又=(1,0,-1),所以|cos〈,n〉|=.所以直线PA与平面PEH所成角的正弦值为.例3 (1)证明 如图,连接DG,CD,设CD∩GF=O,连接OH,在三棱台DEFABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=22\nGC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.(2)解 方法一 设AB=2,则CF=DE=1.在三棱台DEFABC中,G为AC的中点,由DF=AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC,又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点.所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系.所以G(0,0,0),B(,0,0),C(0,,0),D(0,0,1).可得H,F(0,,1),故=,=(0,,1).设n=(x,y,z)是平面FGH的一个法向量,则由可得可得平面FGH的一个法向量n=(1,-1,).因为是平面ACFD的一个法向量,=(,0,0).所以cos〈,n〉===.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.方法二 作HM⊥AC于点M,作MN⊥GF于点N,连接NH.设AB=2.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.22\n在△BGC中,MH∥BG,MH=BG=,由△GNM∽△GCF,可得=,从而MN=.由HM⊥平面ACFD,MN⊂平面ACFD,得HM⊥MN,因此tan∠MNH==,所以∠MNH=60°,所以平面FGH与平面ACFD所成角(锐角)的大小为60°.变式训练3 (1)证明 由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以,,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设面A1DE的法向量n1=(r1,s1,t1),而该面上向量=,=(0,1,-1),由n1⊥.n1⊥得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设面A1B1CD的法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E—A1D—B1的余弦值为==.22\n高考题型精练1.B[极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB都可以大于0,排除A,C.故选B.]2.B[以A为原点建立如图所示的空间直角坐标系,设棱长为1,则A1(0,0,1),E,D(0,1,0),∴=(0,1,-1),=,设平面A1ED的一个法向量为n1=(1,y,z),则 ∴∴n1=(1,2,2).∵平面ABCD的一个法向量为n2=(0,0,1),∴cos〈n1,n2〉==.即所成的锐二面角的余弦值为.]3.B[方法一 如图(1),平移CD至AF,则∠BAF为所求.作二面角α-l-β的平面角∠BAE=60°,又∠EAF=45°,由cos∠BAF=cos∠BAE·cos∠EAF得cos∠BAF=×=.方法二 如图(2),设AB=2a,过点B作BB1⊥β,垂足为B1,作AD1∥CD,则∠BAD1即为所求.过点B1作B1D1⊥AD1于D1,连接AB1,BD1,则易知∠BAB1为二面角的平面角,即∠BAB1=60°,从而BB1=2asin60°=a,∠B1AD1=45°,AB1=a,AD1=B1D1=a.22\n在Rt△BB1D1中,BD1===a.在△BAD1中,由余弦定理,得cos∠BAD1==,即异面直线AB与CD所成角的余弦值为.]4.B[根据题意可知平面A1BD⊥平面A1ACC1且两平面的交线是A1O,所以过点P作交线A1O的垂线PE,则PE⊥平面A1BD,所以∠A1OP或其补角就是直线OP与平面A1BD所成的角α.设正方体的边长为2,则根据图形可知直线OP与平面A1BD可以垂直.当点P与点C1重合时可得A1O=OP=,A1C1=2,所以×××sinα=×2×2,所以sinα=;当点P与点C重合时,可得sinα==.根据选项可知B正确.]5.60°解析 以BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.设AB=BC=AA1=2,则C1(2,0,2),E(0,1,0),F(0,0,1),则=(0,-1,1),=(2,0,2),∴·=2,22\n∴cos〈,〉==,∴EF和BC1所成的角为60°.6.30°解析 如图所示,以O为原点建立空间直角坐标系.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),P(0,-,),则=(2a,0,0),=(-a,-,),=(a,a,0).设平面PAC的法向量为n,可求得n=(0,1,1),则cos〈,n〉===.∴〈,n〉=60°,∴直线BC与平面PAC所成的角为90°-60°=30°.7.(1)证明 如图(1),取BD的中点O,连接AO,CO.图(1)由侧视图及俯视图知,△ABD,△BCD均为正三角形,因此AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NH∥AO,MN∥BD.因为AO⊥BD,所以NH⊥BD.22\n因为MN⊥NP,所以BD⊥NP.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO中点,故P为BC中点.(2)解 方法一 如图(2),作NQ⊥AC于Q,连接MQ.图(2)由(1)知,NP∥AC,所以NQ⊥NP.因为MN⊥NP,所以∠MNQ为二面角A-NP-M的一个平面角.由(1)知,△ABD,△BCD为边长为2的正三角形,所以AO=OC=.由俯视图可知,AO⊥平面BCD.因为OC⊂平面BCD,所以AO⊥OC,因此在等腰Rt△AOC中,AC=.作BR⊥AC于R,在△ABC中,AB=BC,所以BR==.因为在平面ABC内,NQ⊥AC,BR⊥AC,所以NQ∥BR.又因为N为AB的中点,所以Q为AR的中点,因此NQ==.同理,可得MQ=.所以在等腰△MNQ中,cos∠MNQ===.故二面角A-NP-M的余弦值为.22\n图(3)方法二 由俯视图及(1)可知,AO⊥BCD.因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.又OC⊥OB,所以直线OA,OB,OC两两垂直.如图(3),以O为坐标原点,以,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系,则A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,所以M(-,0,),N(,0,),P(,,0).于是=(1,0,-),=(-1,,0),=(1,0,0),=(0,,-).设平面ABC的一个法向量n1=(x1,y1,z1),则即有从而取z1=1,则x1=,y1=1,所以n1=(,1,1).设平面MNP的一个法向量n2=(x2,y2,z2),则即有从而取z2=1,所以n2=(0,1,1).设二面角A-NP-M的大小为θ,则cosθ===.22\n故二面角A-NP-M的余弦值是.8.(1)证明 连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=,且EG⊥AC.在Rt△EBG中,可得BE=,故DF=.在Rt△FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=,从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(2)解 如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,||为单位长,建立空间直角坐标系,由(1)可得A(0,-,0),E(1,0,),F,C(0,,0),所以=(1,,),=.故|cos〈,〉|===.所以直线AE与直线CF所成角的余弦值为.9.解 以{,,}为正交基底建立如图所示的空间直角坐标系,则各点的坐标为A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).22\n(1)因为AD⊥平面PAB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2).设平面PCD的法向量为m=(x,y,z),则m·=0,m·=0,即令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos〈,m〉==,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=λ=(-λ,0,2λ)(0≤λ≤1),又=(0,-1,0),则=+=(-λ,-1,2λ),又=(0,-2,2),从而cos〈,〉==.设1+2λ=t,t∈[1,3],则cos2〈,〉==≤.当且仅当t=,即λ=时,|cos〈,〉|的最大值为.因为y=cosx在上是减函数,此时直线CQ与DP所成角取得最小值.又因为BP==,所以BQ=BP=.10.(1)证明 因为△AEF是等边三角形,O为EF的中点,22\n所以AO⊥EF.又因为平面AEF⊥平面EFCB,平面AEF∩平面EFCB=EF,AO⊂平面AEF,所以AO⊥平面EFCB.又BE⊂平面EFCB,所以AO⊥BE.(2)解 取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB.又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系,则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即令z=1,则x=,y=-1,于是n=(,-1,1).平面AEF的一个法向量为p=(0,1,0).所以cos〈n,p〉==-.由题知二面角FAEB为钝角,所以它的余弦值为-.(3)解 因为BE⊥平面AOC,所以BE⊥OC,即·=0,因为=(a-2,(a-2),0),=(-2,(2-a),0),所以·=-2(a-2)-3(a-2)2.由·=0及0<a<2,解得a=.22

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:55:36 页数:22
价格:¥3 大小:601.48 KB
文章作者:U-336598

推荐特供

MORE