天津市2022年高考数学二轮复习第一部分思想方法研析指导四转化与化归思想检测文
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
思想方法训练4 转化与化归思想一、能力突破训练1.已知M={(x,y)|y=x+a},N={(x,y)|x2+y2=2},且M∩N=⌀,则实数a的取值范围是( ) A.a>2B.a<-2C.a>2或a<-2D.-2<a<2答案:C解析:M∩N=⌀等价于方程组无解.把y=x+a代入到方程x2+y2=2中,消去y,得关于x的一元二次方程2x2+2ax+a2-2=0,①由题易知一元二次方程①无实根,即Δ=(2a)2-4×2×(a2-2)<0,由此解得a>2或a<-2.2.若直线y=x+b被圆x2+y2=1所截得的弦长不小于1,则b的取值范围是( )A.[-1,1]B.C.D.答案:D解析:由弦长不小于1可知圆心到直线的距离不大于,即≤,解得-≤b≤.3.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P横坐标的取值范围为( )A.B.[-1,0]C.[0,1]D.答案:A解析:设P(x0,y0),倾斜角为α,0≤tanα≤1,y=f(x)=x2+2x+3,f'(x)=2x+2,0≤2x0+2≤1,-1≤x0≤-,故选A.4.设a=(sin17°+cos17°),b=2cos213°-1,c=,则a,b,c的大小关系是( )A.c<a<bB.a<c<bC.b<a<cD.c<b<a答案:A解析:∵a=sin(17°+45°)=sin62°,b=cos26°=sin64°,c=sin60°,∴c<a<b.5.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f'(x)在R上恒有f'(x)<2(x∈R),则不等式f(x)<2x+1的解集为( )A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-∞,-1)∪(1,+∞)答案:A解析:设F(x)=f(x)-2x-1,则F'(x)=f'(x)-2<0,得F(x)在R上是减函数.又F(1)=f(1)-2-1=0,即当x>1时,F(x)<0,不等式f(x)<2x+1的解集为(1,+∞),故选A.6.已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg(lg2))=( )A.-5B.-1C.3D.4答案:C解析:因为lg(log210)+lg(lg2)=lg(log210×lg2)=lg=lg1=0,所以lg(lg2)=-lg(log210).设lg(log210)=t,则lg(lg2)=-t.由条件可知f(t)=5,即f(t)=at3+bsint+4=5,所以at3+bsint=1,所以f(-t)=-at3-bsint+4=-1+4=3.7.在平面直角坐标系xOy中,已知圆x2+y2=4上有且只有四个点到直线12x-5y+c=04\n的距离为1,则实数c的取值范围是 . 答案:(-13,13)解析:若圆上有四个点到直线的距离为1,则需圆心(0,0)到直线的距离d满足0≤d<1.∵d==,∴0≤|c|<13,即c∈(-13,13).8.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是 . 答案:(-∞,-5]解析:当x≥0时,f(x)=x2,此时函数f(x)单调递增.∵f(x)是定义在R上的奇函数,∴函数f(x)在R上单调递增.若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则x+a≥3x+1恒成立,即a≥2x+1恒成立.∵x∈[a,a+2],∴(2x+1)max=2(a+2)+1=2a+5,即a≥2a+5,解得a≤-5,∴实数a的取值范围是(-∞,-5].9.若对于任意t∈[1,2],函数g(x)=x3+x2-2x在区间(t,3)内总不为单调函数,求实数m的取值范围.解g'(x)=3x2+(m+4)x-2,若g(x)在区间(t,3)内总为单调函数,则①g'(x)≥0在区间(t,3)内恒成立或②g'(x)≤0在区间(t,3)内恒成立.由①得3x2+(m+4)x-2≥0,即m+4≥-3x在x∈(t,3)内恒成立,∴m+4≥-3t恒成立,则m+4≥-1,即m≥-5;由②得m+4≤-3x在x∈(t,3)内恒成立,则m+4≤-9,即m≤-.故函数g(x)在区间(t,3)内总不为单调函数的m的取值范围为-<m<-5.10.已知函数f(x)=x3-2ax2-3x.(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)已知对一切x∈(0,+∞),af'(x)+4a2x≥lnx-3a-1恒成立,求实数a的取值范围.解(1)由题意知当a=0时,f(x)=x3-3x,所以f'(x)=2x2-3.又f(3)=9,f'(3)=15,所以曲线y=f(x)在点(3,f(3))处的切线方程为15x-y-36=0.(2)f'(x)=2x2-4ax-3,则由题意得2ax2+1≥lnx,即a≥在x∈(0,+∞)时恒成立.设g(x)=,则g'(x)=,当0<x<时,g'(x)>0;当x>时,g'(x)<0,所以当x=时,g(x)取得最大值,且g(x)max=,故实数a的取值范围为.二、思维提升训练11.已知抛物线y2=4x的焦点为F,点P(x,y)为抛物线上的动点,又点A(-1,0),则的最小值是( )A.B.C.D.答案:B解析:4\n显然点A为准线与x轴的交点,如图,过点P作PB垂直准线于点B,则|PB|=|PF|.∴==sin∠PAB.设过A的直线AC与抛物线切于点C,则0<∠BAC≤∠PAB≤,∴sin∠BAC≤sin∠PAB.设切点为(x0,y0),则=4x0,又=y'=,解得∴C(1,2),|AC|=2.∴sin∠BAC==,∴的最小值为.故应选B.12.设F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使(+)·=0,O为坐标原点,且||=||,则该双曲线的离心率为( )A.+1B.C.+D.答案:A解析:如图,取F2P的中点M,则+=2.又由已知得2·=0,∴⊥.又OM为△F2F1P的中位线,∴⊥.在△PF1F2中,2a=||-||=(-1)||,由勾股定理,得2c=2||.∴e==+1.13.若函数f(x)=x2-ax+2在区间[0,1]上至少有一个零点,则实数a的取值范围是 . 答案:[3,+∞)解析:由题意,知关于x的方程x2-ax+2=0在[0,1]上有实数解.又易知x=0不是方程x2-ax+2=0的解,所以根据0<x≤1可将方程x2-ax+2=0变形为a==x+.从而问题转化为求函数g(x)=x+(0<x≤1)的值域.易知函数g(x)在区间(0,1]上单调递减,所以g(x)∈[3,+∞).故所求实数a的取值范围是a≥3.14.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若∀x∈R,f(x)<0或g(x)<0,则m的取值范围是 . 答案:(-4,0)4\n解析:将问题转化为g(x)<0的解集的补集是f(x)<0的解集的子集求解.∵g(x)=2x-2<0,∴x<1.又∀x∈R,f(x)<0或g(x)<0,∴[1,+∞)是f(x)<0的解集的子集.又由f(x)=m(x-2m)(x+m+3)<0知m不可能大于等于0,因此m<0.当m<0时,f(x)<0,即(x-2m)(x+m+3)>0,若2m=-m-3,即m=-1,此时f(x)<0的解集为{x|x≠-2},满足题意;若2m>-m-3,即-1<m<0,此时f(x)<0的解集为{x|x>2m或x<-m-3},依题意2m<1,即-1<m<0;若2m<-m-3,即m<-1,此时f(x)<0的解集为{x|x<2m或x>-m-3},依题意-m-3<1,m>-4,即-4<m<-1.综上可知,满足条件的m的取值范围是-4<m<0.15.已知函数f(x)=elnx,g(x)=f(x)-(x+1)(e=2.718……).(1)求函数g(x)的极大值;(2)求证:1+++…+>ln(n+1)(n∈N*).(1)解∵g(x)=f(x)-(x+1)=lnx-(x+1),∴g'(x)=-1(x>0).令g'(x)>0,解得0<x<1;令g'(x)<0,解得x>1.∴函数g(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴g(x)极大值=g(1)=-2.(2)证明由(1)知x=1是函数g(x)的极大值点,也是最大值点,∴g(x)≤g(1)=-2,即lnx-(x+1)≤-2⇒lnx≤x-1(当且仅当x=1时等号成立).令t=x-1,得t≥ln(t+1),取t=(n∈N*),则>ln=ln,∴1>ln2,>ln,>ln,…,>ln,叠加得1+++…+>ln··…·=ln(n+1).4
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)