首页

新课标2022届高考数学二轮复习题型专项训练6三角函数与三角恒等变换解答题专项理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

题型专项训练6 三角函数与三角恒等变换(解答题专项)1.已知函数f(x)=cos2x-2cos2+1.(1)求f(x)的单调递增区间;(2)求f(x)在区间上的最值.2.(2022浙江温州二模)已知函数f(x)=sinxcosx+cos2x.(1)求函数f(x)的最小正周期;(2)若-<α<0,f(α)=,求sin2α的值.3.已知函数f(x)=sin(ωx+φ)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f,求g(x)的单调递减区间.4.(2022浙江名校协作体下学期联考)已知0≤φ<π,函数f(x)=cos(2x+φ)+sin2x.(1)若φ=,求f(x)的单调递增区间;(2)若f(x)的最大值是,求φ的值.4\n5.已知向量a=(cosωx,-cosωx),b=(sinωx,cosωx),其中ω<0为常数,函数f(x)=a·b,若函数f(x)的最小正周期为π.(1)求ω的值;(2)若当x时,不等式|k+f(x)|<4恒成立,求实数k的取值范围.6.已知x0,x0+是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点.(1)求f的值;(2)若对任意x,都有f(x)-m≤0,求实数m的取值范围.(3)若关于x的方程-m=1在x上有两个不同的解,求实数m的取值范围.参考答案题型专项训练6三角函数与三角恒等变换(解答题专项)1.解(1)函数f(x)=cos2x-2cos2+1=cos2x-cos=cos2x+sin2x=2sin;令2kπ-≤2x+≤2kπ+,k∈Z,解得kπ-≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为(k∈Z).(2)当x∈时,2x+,∴sin,∴f(x)在区间上的最大值为2,最小值为-;即当x=时,f(x)取得最大值2,当x=时,f(x)取得最小值-.2.解(1)f(x)=sinxcosx+cos2x=sin2x+=sin,∴函数f(x)的最小正周期是π.(2)f(α)=sin,∴sin,-<α<0,∴-<2α+,又sin>0,4\n∴0<2α+,∴cos,∴sin2α=sinsincos.3.解(1)因为f(x)=sin(ωx+φ)的最小正周期为π,所以由T==π,得ω=2;由2x+φ=kπ+,k∈Z,得f(x)的图象的对称轴为x=,k∈Z,由,得φ=kπ+.又|φ|≤,所以φ=.(2)函数g(x)=f(x)+f=sin+sin2x=sin2x+cos2x+sin2x=sin.令2kπ+≤2x+≤2kπ+,k∈Z,解得kπ+≤x≤kπ+,k∈Z.所以g(x)的单调递减区间为,k∈Z.4.解(1)由题意,f(x)=cos(2x+)+sin2x=cos2x-sin2x+cos,由2kπ-π≤2x+≤2kπ,得kπ-≤x≤kπ-.所以f(x)的单调递增区间为,k∈Z.(2)由题意,f(x)=cos2x-sinφsin2x+,由于函数f(x)的最大值为,即=1,从而cosφ=0,又0≤φ<π,故φ=.5.解(1)由题设,f(x)=a·b=sinωxcosωx-cos2ωx=sin2ωx-=sin.因为f(x)的最小正周期为π,则=π,即|ω|=1.又ω<0,所以ω=-1.(2)由|k+f(x)|<4,得-4<k+f(x)<4,即-4-f(x)<k<4-f(x).据题意,当x∈时,[-4-f(x)]max<k<[4-f(x)]min,因为ω=-1,则f(x)=sin=-sin.当x∈时,2x+,sin,所以f(x)max=0,f(x)min=-.所以[-4-f(x)]max=-4+=-,[4-f(x)]min=4,故k的取值范围是.6.解(1)f(x)===sin.由题意可知,f(x)的最小正周期T=π,∴=π,又∵ω>0,∴ω=1,∴f(x)=sin.∴fsinsin.(2)由f(x)-m≤0,得f(x)≤m,∴m≥f(x)max.∵-≤x≤0,∴-≤2x+,∴-1≤sin,∴-sin,即f(x)max=,∴m≥,∴m∈.(3)原方程可化为sin=m+1,4\n即2sin=m+1,0≤x≤,画出y=2sin的草图(图略),当x=0时,y=2sin,又y的最大值为2,∴要使两方程在x∈上有两个不同的解,即≤m+1<2,即-1≤m<1,所以m∈.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:29:02 页数:4
价格:¥3 大小:18.68 KB
文章作者:U-336598

推荐特供

MORE