首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
江西省2022年高考数学二轮复习 小题精做系列之圆锥曲线2
江西省2022年高考数学二轮复习 小题精做系列之圆锥曲线2
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/22
2
/22
剩余20页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
江西省2022年高考数学二轮复习小题精做系列之圆锥曲线2一.基础题组1.【上海市长宁、嘉定区2022届高三4月第二次模拟考试数学(理)试题】已知抛物线型拱桥的顶点距水面米时,量得水面宽为米.则水面升高米后,水面宽是____________米(精确到米).2.【上海市崇明县2022届高三高考模拟考试(二模)数学(理)试卷】经过点且法向量为的直线的方程是 .3.【上海市崇明县2022届高三高考模拟考试(二模)数学(理)试卷】方程表示焦点在轴上的双曲线,则实数取值范围是 .4.【上海市奉贤区2022届下学期高三二模数学试卷(理科)】已知抛物线焦点恰好是双曲线的右焦点,且双曲线过点-22-\n,则该双曲线的渐近线方程为________.5.【上海市长宁、嘉定区2022届高三4月第二次模拟考试数学(理)试题】设、是双曲线:(,)的两个焦点,是上一点,若,且△最小内角的大小为,则双曲线的渐近线方程是…………………………………………………()A.B.C.D.6.【上海市虹口区2022届高三4月高考练习(二模)数学(理)试题】抛物线的焦点与双曲线的左焦点重合,则双曲线的两条渐近线的夹角为.【答案】【解析】-22-\n7.【上海市虹口区2022届高三4月高考练习(二模)数学(理)试题】椭圆,参数的范围是)的两个焦点为、,以为边作正三角形,若椭圆恰好平分正三角形的另两条边,且,则等于.8.【上海市闵行区2022届高三下学期教育质量调研(二模)数学(理)试题】若曲线上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是().(A)(B)(C)(D)-22-\n考点:方程与曲线,曲线的切线.9.【上海市徐汇、金山、松江区2022届高三第二学期学习能力诊断数学(理)试题】设圆O1和圆O2是两个相离的定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹可能是①两条双曲线;②一条双曲线和一条直线;③一条双曲线和一个椭圆.以上命题正确的是--()A.①③B.②③C.①②D.①②③三.拔高题组1.【上海市长宁、嘉定区2022届高三4月第二次模拟考试数学(理)试题】已知椭圆:()的右焦点为,且椭圆过点.(1)求椭圆的方程;(2)设斜率为的直线与椭圆交于不同两点、,以线段为底边作等腰三角形,其中顶点的坐标为,求△的面积.【答案】(1);(2).-22-\n所以,解得.…………………………………………(5分)此时方程①变为,解得,,所以.又到直线:的距离,………(7分)-22-\n所以△的面积.………………………………………(8分)考点:(1)椭圆的标准方程;(2)直线与椭圆相交的综合问题.2.【上海市崇明县2022届高三高考模拟考试(二模)数学(理)试卷】已知椭圆经过点,且其右焦点与抛物线的焦点重合,过点且与坐标轴不垂直的直线与椭圆交于两点.(1)求椭圆的方程;(2)设O为坐标原点,线段上是否存在点,使得?若存在,求出的取值范围;若不存在,说明理由;(3)过点且不垂直于轴的直线与椭圆交于两点,点关于轴的对称点为,试证明:直线过定点.试题解析:(1)由题意,得:所以,解,得,所以椭圆的方程为:;-22-\n(1)证明:设直线的方程为:,代入,得:,由,得:,设,则,则直线的方程为,-22-\n令得:,所以直线过定点.考点:椭圆的标准方程,直线与椭圆的位置关系.3.【上海市奉贤区2022届下学期高三二模数学试卷(理科)】如图,已知平面内一动点到两个定点、的距离之和为,线段的长为.(1)求动点的轨迹;(2)当时,过点作直线与轨迹交于、两点,且点在线段的上方,线段的垂直平分线为①求的面积的最大值;②轨迹上是否存在除、外的两点、关于直线对称,请说明理由.【答案】(1)参考解析;(2)①;②参考解析【解析】试题解析:(1)当即时,轨迹是以、为焦点的椭圆3分当时,轨迹是线段4分当时,轨迹不存在5分-22-\n②结论:当时,显然存在除、外的两点、关于直线对称11分下证当与不垂直时,不存在除、外的两点、关于直线对称12分-22-\n直线的斜率为,则假设不成立,-22-\n故此时椭圆上不存在两点(除了点、点外)关于直线对称16分考点:1.点的轨迹问题.2.椭圆的性质.3.直线与椭圆的位置关系.3.对称性的应用.4.【上海市虹口区2022届高三4月高考练习(二模)数学(理)试题】如图,直线与抛物线(常数)相交于不同的两点、,且(为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用、表示出点、点的坐标,并证明垂直于轴;(2)求的面积,证明的面积与、无关,只与有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连、,再作与、平行的切线,切点分别为、,小张马上写出了、的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.【答案】(1),,(2),(3)能.【解析】试题分析:(1)因为D点为直线与抛物线的交点A,B中点,所以求D点坐标就根据直线方程与抛物线方程联立方程组,利用韦达定理求解,即由,得,,点.因为C点为切点,利用切线方程与抛物线方程联立方程组后的判别-22-\n(本小题也可以求,切点到直线的距离,相应给分)-22-\n5.【上海市黄浦区2022年高考模拟(二模)数学(理)试题】已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.(1)求曲线的方程;(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.设存在这个定圆与动圆内切,则圆心距为两圆半径之差,从而与两圆中的某个圆的半径之和或差为定值(定圆的半径),由于点是椭圆的右焦点,这时联想椭圆的定义,若是椭圆的左焦点,则就有是常数,故定圆是以-22-\n为圆心,4为半径的圆.6.【上海市静安、杨浦、青浦、宝山四区2022高考模拟(理科)数学】已知椭圆的右焦点为,短轴的端点分别为,且-22-\n.(1)求椭圆的方程;(2)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.所以弦的中点为.-22-\n所以的取值范围是.考点:1.向量的数量积.2.椭圆的性质.3.等价转化的数学思想.4.运算能力.7.【上海市闵行区2022届高三下学期教育质量调研(二模)数学(理)试题】为了寻找马航残骸,我国“雪龙号”科考船于2022年3月26日从港口出发,沿北偏东角的射线方向航行,而在港口北偏东角的方向上有一个给科考船补给物资的小岛,海里,且.现指挥部需要紧急征调位于港口正东海里的处的补给船,速往小岛装上补给物资供给科考船.该船沿方向全速追赶科考船,并在处相遇.经测算当两船运行的航线与海岸线围成的三角形的面积-22-\n最小时,这种补给方案最优.(1)求关于的函数关系式;(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?东北ABCO第21题图···Z-22-\n考点:解析法解应用题.8.【上海市闵行区2022届高三下学期教育质量调研(二模)数学(理)试题】设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:(1)求,的标准方程;(2)若与交于C、D两点,为的左焦点,求的最小值;(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.-22-\n试题解析:(1)在椭圆上,在抛物线上,:…………………(4分)-22-\n-22-\n联立方程,解得;……………(12分)9.【上海市徐汇、金山、松江区2022届高三第二学期学习能力诊断数学(理)试题】已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.(1)求椭圆的方程;(2)已知直线与椭圆交于、两点,试问,是否存在轴上的点,使得对任意的,为定值,若存在,求出点的坐标,若不存在,说明理由.【答案】(1);(2)存在点使得为定值.-22-\n-22-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
江西省2022年高考数学二轮复习 小题精做系列之算法2
江西省2022年高考数学二轮复习 小题精做系列之立体几何2
江西省2022年高考数学二轮复习 小题精做系列之直线与圆2
江西省2022年高考数学二轮复习 小题精做系列之概率和统计2
江西省2022年高考数学二轮复习 小题精做系列之平面向量2
江西省2022年高考数学二轮复习 小题精做系列之圆锥曲线3
江西省2022年高考数学二轮复习 小题精做系列之圆锥曲线1
江西省2022年高考数学二轮复习 小题精做系列之函数3
江西省2022年高考数学二轮复习 小题精做系列之函数2
江西省2022年高考数学二轮复习 小题精做系列之函数1
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 23:18:15
页数:22
价格:¥3
大小:1.05 MB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划