首页

高考数学一轮复习第1章集合与常用逻辑用语第3讲命题充分条件与必要条件知能训练轻松闯关理北师大版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第3讲命题、充分条件与必要条件1.命题“若一个数是负数,则它的平方是正数”的逆命题是(  )A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”解析:选B.依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.(2022·大连质检)命题“若a,b,c成等比数列,则b2=ac”的逆否命题是(  )A.“若a,b,c成等比数列,则b2≠ac”B.“若a,b,c不成等比数列,则b2≠ac”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac,则a,b,c不成等比数列”解析:选D.根据原命题与其逆否命题的关系,易得命题“若a,b,c成等比数列,则b2=ac”的逆否命题是“若b2≠ac,则a,b,c不成等比数列”.3.(2022·蚌埠质检)函数f(x)=sin(ωx+φ)的最小正周期大于π的充分不必要条件是(  )A.ω=1         B.ω=2C.ω<1D.ω>2解析:选A.f(x)的最小正周期大于π⇔T=>π⇔0<|ω|<2,故选A.4.设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.由题意得A∪B={x∈R|x<0或x>2},C={x∈R|x<0或x>2},故A∪B=C,则“x∈A∪B”是“x∈C”的充要条件.5.(2022·江西省八校联考)在△ABC中,“·=·”是“||=||”成立的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.·=·⇔·(+)=0⇔AB与AB边上的中线垂直⇔||=||.6.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为(  )A.“若x=-4,则x2+3x-4=0”为真命题B.“若x≠-4,则x2+3x-4≠0”为真命题C.“若x≠-4,则x2+3x-4≠0”为假命题D.“若x=-4,则x2+3x-4=0”为假命题解析:选C.根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=-4或1,故选C.7.(2022·宿州质检)“a>-1”是“函数f(x)=x+a|x-1|在R上是增加的”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.函数f(x)=x+a|x-1|=在R上是增加的充要条件是4\n即-1<a<1,故选B.8.已知直线l,m,其中只有m在平面α内,则“l∥α”是“l∥m”的(  )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B.当l∥α时,直线l与平面α内的直线m平行、异面都有可能,所以l∥m不成立;当l∥m时,根据直线与平面平行的判定定理知直线l∥α,即“l∥α”是“l∥m”的必要不充分条件,故选B.9.(2022·高考浙江卷)设a,b是实数,则“a+b>0”是“ab>0”的(  )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D.特值法:当a=10,b=-1时,a+b>0,ab<0,故a+b>0⇒/ab>0;当a=-2,b=-1时,ab>0,但a+b<0,所以ab>0⇒/a+b>0.故“a+b>0”是“ab>0”的既不充分也不必要条件.10.下列选项中,p是q的必要不充分条件的是(  )A.p:x=1,q:x2=xB.p:|a|>|b|,q:a2>b2C.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d解析:选D.A中,x=1⇒x2=x,x2=x⇒x=0或x=1x=1,故p是q的充分不必要条件;B中,因为|a|>|b|,根据不等式的性质可得a2>b2,反之也成立,故p是q的充要条件;C中,因为a2+b2≥2ab,由x>a2+b2,得x>2ab,反之不成立,故p是q的充分不必要条件;D中,取a=-1,b=1,c=0,d=-3,满足a+c>b+d,但是a<b,c>d,反之,由同向不等式可加性得a>b,c>d⇒a+c>b+d,故p是q的必要不充分条件.综上所述,故选D.11.(2022·郑州联考)已知a,b为非零向量,则“函数f(x)=(ax+b)2为偶函数”是“a⊥b”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.因为f(x)=(ax+b)2=a2x2+2a·bx+b2,且f(x)=(ax+b)2为偶函数,所以2a·b=0,即a·b=0,所以a⊥b;若a⊥b,则有a·b=0,所以f(x)=(ax+b)2=a2x2+2a·bx+b2=a2x2+b2为偶函数,所以“函数f(x)=(ax+b)2为偶函数”是“a⊥b”的充要条件,故选C.12.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则实数k的取值范围是(  )A.[2,+∞)       B.(2,+∞)C.[1,+∞)D.(-∞,-1]解析:选B.由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞),故选B.13.在命题“若m>-n,则m2>n2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:原命题为假命题,逆否命题也为假命题,逆命题也是假命题,否命题也是假命题.故假命题个数为3.答案:314.函数f(x)=x2+mx+1的图像关于直线x=1对称的充要条件是________.解析:已知函数f(x)=x2-2x+1的图像关于直线x=1对称,则m=-2;反之也成立.所以函数f(x)=x2+mx+1的图像关于直线x=1对称的充要条件是m=-2.4\n答案:m=-215.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.解析:由题意知ax2-2ax-3≤0恒成立,当a=0时,-3≤0成立;当a≠0时,得解得-3≤a<0,故-3≤a≤0.答案:[-3,0]16.(2022·榆林一模)已知命题p:实数x满足-2≤1-≤2;命题q:实数x满足x2-2x+(1-m2)≤0(m>0).若綈p是綈q的必要不充分条件,则实数m的取值范围是________.解析:令A={x|-2≤1-≤2}={x|-2≤x≤10},B={x|x2-2x+(1-m2)≤0,m>0}={x|1-m≤x≤1+m,m>0}.因为“若綈p,则綈q”的逆否命题为“若q,则p”,而綈p是綈q的必要不充分条件,所以q是p的必要不充分条件,所以p⇒q,即AB,故(等号不同时取到),解得m≥9.答案:[9,+∞)1.(2022·高考福建卷)“对任意x∈(0,),ksinxcosx<x”是“k<1”的(  )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B.令f(t)=sint-t,则f′(t)=cost-1≤0恒成立,所以f(t)=sint-t在[0,π]上是减函数,f(t)≤f(0)=0,所以sint<t(0<t<π).令t=2x,则sin2x<2x(0<x<),所以2sinxcosx<2x,所以sinxcosx<x.当k<1时,ksinxcosx<x,故必要性成立;当x=时,ksin2x<2x可化为k<=,而>,取k=,不等式成立,但此时k>1,故充分性不成立.2.已知集合A=,B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是________.解析:A=={x|-1<x<3},因为x∈B成立的一个充分不必要条件是x∈A,所以AB,所以m+1>3,即m>2.答案:(2,+∞)3.已知集合A=,B={x|x+m2≥1}.p:x∈A,q:x∈B,并且p是q的充分条件,求实数m的取值范围.4\n解:化简集合A,由y=x2-x+1.配方得y=+.因为x∈,所以ymin=,ymax=2.所以y∈.所以A=.化简集合B,由x+m2≥1,得x≥1-m2,B=.因为命题p是命题q的充分条件,所以A⊆B.所以1-m2≤,解得m≥或m≤-.所以实数m的取值范围是∪.4.已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求两方程的根都是整数的充要条件.解:因为mx2-4x+4=0是一元二次方程,所以m≠0.又另一方程为x2-4mx+4m2-4m-5=0,且两方程都要有实根,所以解得m∈.因为两方程的根都是整数,故其根的和与积也为整数,所以所以m为4的约数.又因为m∈,所以m=-1或1.当m=-1时,第一个方程x2+4x-4=0的根为非整数;而当m=1时,两方程的根均为整数,所以两方程的根均为整数的充要条件是m=1.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 16:56:48 页数:4
价格:¥3 大小:100.86 KB
文章作者:U-336598

推荐特供

MORE