首页

高考数学一轮复习第2章基本初等函数导数及其应用第8讲函数的图象知能训练轻松闯关理北师大版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第8讲函数的图象1.(2022·陕西一模)函数f(x)=ln的图像是(  )解析:选B.由x->0得函数f(x)的定义域为(-1,0)∪(1,+∞),可排除选项A、D;当x→+∞时,函数f(x)的函数值大于零,可排除选项C,故选B.2.在同一平面直角坐标系中,函数y=g(x)的图像与y=ex的图像关于直线y=x对称.而函数y=f(x)的图像与y=g(x)的图像关于y轴对称,若f(m)=-1,则m的值是(  )A.-e          B.-C.eD.解析:选B.由题意知g(x)=lnx,则f(x)=ln(-x),若f(m)=-1,则ln(-m)=-1,解得m=-.3.(2022·江西省五校联考)已知函数f(x)=x2-,则函数y=f(x)的大致图像为(  )解析:选A.由f(-x)=x2+≠-f(x)可知函数f(x)不是奇函数,排除B、C,当x∈(0,1)时,f(x)=x2-,因为当x∈(0,1)时,y=lnx<0,则f(x)>0,排除D,故选A.4.已知函数f(x)=x|x|-2x,则下列结论正确的是(  )A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(-∞,1)C.f(x)是奇函数,递减区间是(-1,1)D.f(x)是奇函数,递增区间是(-∞,0)解析:选C.5\n将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图像,如图,观察图像可知,函数f(x)的图像关于原点对称,故函数f(x)为奇函数,且在(-1,1)上递减.5.(2022·唐山高三月考)为了得到函数y=log2的图像,可将函数y=log2x的图像上所有的点(  )A.纵坐标缩短到原来的,横坐标不变,再向右平移1个单位B.横坐标缩短到原来的,纵坐标不变,再向左平移1个单位C.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位D.纵坐标伸长到原来的2倍,横坐标不变,再向右平移1个单位解析:选A.y=log2=log2(x-1)=log2(x-1),由y=log2x的图像纵坐标缩短到原来的,横坐标不变,可得y=log2x的图像,再向右平移1个单位,可得y=log2(x-1)的图像,也即y=log2的图像.6.使log2(-x)<x+1成立的x的取值范围是(  )A.(-1,0)B.[-1,0)C.(-2,0)D.[-2,0)解析:选A.在同一坐标系内作出y=log2(-x),y=x+1的图像,知满足条件的x∈(-1,0),故选A.7.如图,函数f(x)的图像是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f的值等于________.解析:由图像知f(3)=1,所以=1.所以f=f(1)=2.答案:28.若函数y=f(x+3)的图像经过点P(1,4),则函数y=f(x)的图像必经过点________.解析:法一:函数y=f(x)的图像是由y=f(x+3)的图像向右平移3个单位长度而得到的.5\n故y=f(x)的图像经过点(4,4).法二:由题意得f(4)=4成立,故函数y=f(x)的图像必经过点(4,4).答案:(4,4)9.已知图(1)中的图像对应的函数为y=f(x),则图(2)中的图像对应的函数在下列给出的四个式子中,可能是________(填序号).①y=f(|x|);②y=|f(x)|;③y=-f(|x|);④y=f(-|x|).解析:由题图(1)和题图(2)的关系可知,题图(2)是由题图(1)在y轴左侧的部分(含原点)及其关于y轴对称的图形构成的,故④正确.答案:④10.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.解析:如图,作出函数f(x)=|x+a|与g(x)=x-1的图像,观察图像可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).答案:[-1,+∞)11.已知函数f(x)=.(1)画出f(x)的草图;(2)指出f(x)的单调区间.解:(1)f(x)==1-,函数f(x)的图像是由反比例函数y=-的图像向左平移1个单位后,再向上平移1个单位得到的,图像如图所示.(2)由图像可以看出,函数f(x)有两个增区间:(-∞,-1),(-1,+∞).12.已知函数f(x)=|x2-4x+3|.(1)求函数f(x)的单调区间,并指出其增减性;(2)求集合M={m|使方程f(x)=m有四个不相等的实根}.解:f(x)=作出函数图像如图.5\n(1)由图像知函数的增区间为[1,2],[3,+∞); 函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y=f(x)和y=m的图像,使两函数图像有四个不同的交点(如图).由图知0<m<1,所以M={m|0<m<1}.1.函数f(x)的图像如图所示,若函数y=2f(x-1)-c与x轴有四个不同交点,则c的取值范围是(  )A.(-1,2.5)B.(-1,5)C.(-2,2.5)D.(-2,5)解析:选D.函数y=2f(x-1)-c与x轴有四个不同交点,即方程2f(x-1)-c=0有四个不同的解,即y=f(x-1)与y=c有四个不同的交点.因为函数y=f(x-1)与函数y=f(x)上下分布相同,所以可以把问题转化为c取何值时,曲线y=f(x)与y=c有四个不同的交点,结合图形可知c∈(-2,5).2.(2022·深圳质检)设函数y=,关于该函数图像的命题如下:①一定存在两点,这两点的连线平行于x轴;②任意两点的连线都不平行于y轴;③关于直线y=x对称;④关于原点中心对称.其中正确的是________.解析:y===2+,图像如图所示.可知②③正确.答案:②③3.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图像;(3)根据图像指出f(x)的递减区间;(4)根据图像写出不等式f(x)>0的解集;(5)求当x∈[1,5)时函数的值域.解:(1)因为f(4)=0,所以4|m-4|=0,即m=4.(2)由(1)得f(x)=x|4-x|5\n=f(x)的图像如图所示.(3)f(x)的递减区间是[2,4].(4)由图像可知,f(x)>0的解集为{x|0<x<4或x>4}.(5)因为f(5)=5>4,所以由图像知,函数在[1,5)上的值域为[0,5).4.(1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证:y=f(x)的图像关于直线x=m对称;(2)若函数f(x)=log2|ax-1|的图像的对称轴是x=2,求非零实数a的值.解:(1)证明:设P(x0,y0)是y=f(x)图像上任意一点,则y0=f(x0).设P点关于x=m的对称点为P′,则P′的坐标为(2m-x0,y0).由已知f(x+m)=f(m-x),得f(2m-x0)=f[m+(m-x0)]=f[m-(m-x0)]=f(x0)=y0.即P′(2m-x0,y0)在y=f(x)的图像上.所以y=f(x)的图像关于直线x=m对称.(2)对定义域内的任意x,有f(2-x)=f(2+x)恒成立.所以|a(2-x)-1|=|a(2+x)-1|恒成立,即|-ax+(2a-1)|=|ax+(2a-1)|恒成立.又因为a≠0,所以2a-1=0,得a=.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 16:56:58 页数:5
价格:¥3 大小:254.85 KB
文章作者:U-336598

推荐特供

MORE