首页

高考数学一轮复习第7章立体几何第2讲空间图形的基本关系与公理知能训练轻松闯关理北师大版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第2讲空间图形的基本关系与公理1.已知l1,l2,l3是空间三条不同的直线,则下列命题正确的是(  )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析:选B.在空间中,垂直于同一直线的两条直线不一定平行,故A错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错.2.(2022·赣州四校联考)若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是(  )A.AB∥CD      B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:选D.因为平面α∥平面β,要使直线AC∥直线BD,则直线AC与BD是共面直线,即A,B,C,D四点必须共面.3.(2022·高考广东卷)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是(  )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:选D.如图,在长方体ABCDA1B1C1D1中,记l1=DD1,l2=DC,l3=DA,若l4=AA1,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.若l4=DC1,也满足条件,可以排除选项B.故选D.4.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必经过(  )A.点AB.点BC.点C但不过点MD.点C和点M解析:选D.因为ABγ,M∈AB,所以M∈γ.又α∩β=l,M∈l,所以M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.5.(2022·昆明质检)已知A、B、C、D是空间四个点,甲:A、B、C、D四点不共面,乙:直线AB和直线CD不相交,则甲是乙成立的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为A、B、C、D四点不共面,则直线AB和直线CD不相交,反之,直线AB6\n和直线CD不相交,A、B、C、D四点不一定不共面.故甲是乙成立的充分不必要条件.6.(2022·郑州模拟)如图所示,ABCDA1B1C1D1是正方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是(  )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:选A.连接A1C1,AC(图略),则A1C1∥AC,所以A1,C1,A,C四点共面,所以A1C平面ACC1A1.因为M∈A1C,所以M∈平面ACC1A1.又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.所以A,M,O三点共线.7.(2022·郑州模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是____________.解析: 如图,把平面展开图还原成正四面体,知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE与MN垂直,故②③④正确.答案:②③④8.如图所示,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则当AC,BD满足条件________时,四边形EFGH为菱形,当AC,BD满足条件________时,四边形EFGH是正方形.解析:易知EH∥BD∥FG,且EH=BD=FG,同理EF∥AC∥HG,且EF=AC=HG,显然四边形EFGH6\n为平行四边形.要使平行四边形EFGH为菱形需满足EF=EH,即AC=BD;要使四边形EFGH为正方形需满足EF=EH且EF⊥EH,即AC=BD且AC⊥BD.答案:AC=BD AC=BD且AC⊥BD9.在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中GH与MN异面.答案:②④10.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.解析:连接AC.因为A′C′∥AC,所以AO与A′C′所成的角就是∠OAC(或其补角).因为OC⊥OB,AB⊥平面BB′C′C,所以OC⊥AB.又AB∩BO=B,所以OC⊥平面ABO.又OA平面ABO,所以OC⊥OA.在Rt△AOC中,OC=,AC=,sin∠OAC==,所以∠OAC=30°.即AO与A′C′所成角的度数为30°.答案:30°11.如图,已知不共面的三条直线a、b、c相交于点P,A∈a,B∈a,C∈b,D∈c,求证:AD与BC是异面直线.证明:假设AD与BC共面,所确定的平面为α,那么点P、A、B、C、D都在平面α内,所以直线a、b、c都在平面α内,与已知条件a、b、c不共面矛盾,假设不成立,所以AD和BC是异面直线.12.在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)如图,6\n连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.因为AB1=AC=B1C,所以∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCDA1B1C1D1中,AC⊥BD,AC∥A1C1.因为E,F分别为AB,AD的中点,所以EF∥BD,所以EF⊥AC.所以EF⊥A1C1.即A1C1与EF所成的角为90°.1.如图,四棱锥PABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形,则异面直线CD与PB所成角的大小为(  )A.90°B.75°C.60°D.45°解析:选A.延长DA至E,使AE=DA,连接PE,BE,因为∠ABC=∠BAD=90°,BC=2AD,所以DE=BC,DE∥BC.所以四边形CBED为平行四边形.所以CD∥BE.所以∠PBE(或其补角)就是异面直线CD与PB所成的角.在△PAE中,AE=PA,∠PAE=120°,由余弦定理得PE===AE.在△ABE中,AE=AB,∠BAE=90°,所以BE=AE.因为△PAB是等边三角形,所以PB=AB=AE.因为PB2+BE2=AE2+2AE2=3AE2=PE2,所以∠PBE=90°.故选A.2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.6\n解析:如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线=24(对).答案:243.如图所示,在三棱锥PABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求证:AE与PB是异面直线;(2)求异面直线AE和PB所成角的余弦值.解:(1)证明:假设AE与PB共面,设平面为α.因为A∈α,B∈α,E∈α,所以平面α即为平面ABE,所以P∈平面ABE,这与P∉平面ABE矛盾,所以AE与PB是异面直线.(2)取BC的中点F,连接EF、AF,则EF∥PB,所以∠AEF(或其补角)就是异面直线AE和PB所成的角.因为∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,所以AF=,AE=,EF=,cos∠AEF===,所以异面直线AE和PB所成角的余弦值为.4.6\n如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC綊AD,BE綊FA,G,H分别为FA,FD的中点.(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?解:(1)证明:由题设知,FG=GA,FH=HD,所以GH綊AD.又BC綊AD,故GH綊BC.所以四边形BCHG是平行四边形.(2)C,D,F,E四点共面.理由如下:由BE綊FA,G是FA的中点知,BE綊GF,所以EF綊BG.由(1)知BG∥CH,所以EF∥CH,故EC、FH共面.又点D在直线FH上,所以C,D,F,E四点共面.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 16:57:12 页数:6
价格:¥3 大小:298.27 KB
文章作者:U-336598

推荐特供

MORE