首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
高考数学一轮复习第8章平面解析几何第2讲两直线的位置关系知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第2讲两直线的位置关系知能训练轻松闯关文北师大版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/4
2
/4
剩余2页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第2讲两直线的位置关系1.已知直线l1:k1x+y+1=0与直线l2:k2x+y-1=0,那么“k1=k2”是“l1∥l2”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.由k1=k2,1≠-1,得l1∥l2;由l1∥l2,知k1×1-k2×1=0,所以k1=k2.故“k1=k2”是“l1∥l2”的充要条件.2.(2022·石家庄模拟)已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为( )A.x-y+1=0B.x-y=0C.x+y+1=0D.x+y=0解析:选A.由题意知直线l与直线PQ垂直,直线PQ的斜率kPQ=-1,所以直线l的斜率k=-=1.又直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.3.已知点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则m的值为( )A.-6或B.-或1C.-或D.0或解析:选A.法一:=,即|3m+5|=|7-m|,解得m=-6或.法二:当A,B两点在直线同侧,则-m=,即m=;当A,B两点在直线异侧,则A,B的中点在直线上,即m×++3=0,即m=-6.4.已知过点A(-2,m)和点B(m,4)的直线为l1,直线2x+y-1=0为l2,直线x+ny+1=0为l3.若l1∥l2,l2⊥l3,则实数m+n的值为( )A.-10B.-2C.0D.8解析:选A.因为l1∥l2,所以kAB==-2.解得m=-8.又因为l2⊥l3,所以-×(-2)=-1,解得n=-2,所以m+n=-10.5.若动点P1(x1,y1),P2(x2,y2)分别在直线l1:x-y-5=0,l2:x-y-15=0上移动,则线段P1P2的中点P到原点的距离的最小值是( )A.B.5C.D.15解析:选B.由题意得,线段P1P2的中点P的轨迹方程是x-y-10=0,因为原点到直线x-y-10=0的距离为d==5,所以线段P1P2的中点P到原点的距离的最小值为5.6.(2022·合肥一模)已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( )4\nA.x-2y+1=0B.x-2y-1=0C.x+y-1=0D.x+2y-1=0解析:选B.因为l1与l2关于l对称,所以l1上任一点关于l的对称点都在l2上,故l与l1的交点(1,0)在l2上.又易知(0,-2)为l1上一点,设它关于l的对称点为(x,y),则解得即(1,0),(-1,-1)为l2上两点,可得l2的方程为x-2y-1=0,故选B.7.(2022·河南省安阳高三调研)已知两直线l1:x+ysinα-1=0和l2:2xsinα+y+1=0.①若l1∥l2,则α=________;②若l1⊥l2,则α=________.解析:①法一:当sinα=0时,直线l1的斜率k1不存在,l2的斜率k2为0,显然l1不平行于l2;当sinα≠0时,k1=-,k2=-2sinα.要使l1∥l2,需-=-2sinα,即sinα=±.所以α=kπ±,k∈Z,此时两直线的斜率相等.经检验,α=kπ±,k∈Z时,l1与l2不重合.故当α=kπ±,k∈Z时,l1∥l2.法二:由A1B2-A2B1=0,得2sin2α-1=0,所以sinα=±.又B1C2-B2C1≠0,所以1+sinα≠0.即sinα≠-1.所以α=kπ±,k∈Z.故当α=kπ±,k∈Z时,l1∥l2.②因为A1A2+B1B2=0是l1⊥l2的充要条件,所以2sinα+sinα=0,即sinα=0,所以α=kπ,k∈Z.故当α=kπ,k∈Z时,l1⊥l2.答案:①kπ±(k∈Z) ②kπ(k∈Z)8.已知直线l1与l2:x+y-1=0平行,且l1与l2的距离是,则直线l1的方程为________.解析:因为l1与l2:x+y-1=0平行,所以可设l1的方程为x+y+b=0(b≠-1). 又因为l1与l2的距离是,所以=,解得b=1或b=-3,即l1的方程为x+y+1=0或x+y-3=0.答案:x+y+1=0或x+y-3=09.设直线l经过点A(-1,1),则当点B(2,-1)与直线l的距离最远时,直线l的方程为________.4\n解析:设点B(2,-1)到直线l的距离为d,当d=|AB|时取得最大值,此时直线l垂直于直线AB,kl=-=,所以直线l的方程为y-1=(x+1),即3x-2y+5=0.答案:3x-2y+5=010.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点.光线从点P出发,经BC,CA反射后又回到点P(如图).若光线QR经过△ABC的重心,则|AP|等于________.解析:以AB所在直线为x轴,AC所在直线为y轴建立如图所示的坐标系,由题意可知B(4,0),C(0,4),A(0,0),则直线BC方程为x+y-4=0,设P(t,0)(0<t<4),由对称知识可得点P关于BC所在直线的对称点P1的坐标为(4,4-t),点P关于y轴的对称点P2的坐标为(-t,0),根据反射定律可知P1P2所在直线就是光线RQ所在直线.由P1、P2两点坐标可得P1P2所在直线的方程为y=·(x+t),设△ABC的重心为G,易知G.因为重心G在光线RQ上,所以有=·,即3t2-4t=0.所以t=0或t=,因为0<t<4,所以t=,即|AP|=.答案:11.已知直线l1:x+a2y+1=0和直线l2:(a2+1)x-by+3=0(a,b∈R).(1)若l1∥l2,求b的取值范围;(2)若l1⊥l2,求|ab|的最小值.解:(1)因为l1∥l2,所以-b-(a2+1)a2=0,即b=-a2(a2+1)=-a4-a2=-+,因为a2≥0,所以b≤0.又因为a2+1≠3,所以b≠-6.故b的取值范围是(-∞,-6)∪(-6,0].(2)因为l1⊥l2,所以(a2+1)-a2b=0,显然a≠0,所以ab=a+,|ab|=≥2,当且仅当a=±1时等号成立,因此|ab|的最小值为2.1.(2022·洛阳统考)已知点P(x0,y0)是直线l:Ax+By+C=0外一点,则方程Ax+By+C+(Ax0+By0+C)=0表示( )4\nA.过点P且与l垂直的直线B.过点P且与l平行的直线C.不过点P且与l垂直的直线D.不过点P且与l平行的直线解析:选D.因为点P(x0,y0)不在直线Ax+By+C=0上,所以Ax0+By0+C≠0,所以直线Ax+By+C+(Ax0+By0+C)=0不经过点P,排除A、B;又直线Ax+By+C+(Ax0+By0+C)=0与直线l:Ax+By+C=0平行,排除C,故选D.2.已知直线l经过直线2x+y-5=0与x-2y=0的交点P.(1)点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,所以=3,解得λ=或λ=2.所以直线l的方程为x=2或4x-3y-5=0.(2)由解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d≤|PA|(当l⊥PA时等号成立).所以dmax=|PA|=.3.A,B两个工厂距一条河分别为400m和100m,A,B两工厂之间距离500m,把小河看作一条直线,今在小河边上建一座供水站,供A,B两工厂用水,要使供水站到A,B两工厂铺设的水管长度之和最短,问供水站应建在什么地方?解:如图,以小河所在直线为x轴,过点A的垂线为y轴,建立直角坐标系,则点A(0,400),点B(a,100).过点B作BC⊥AO于点C.在△ABC中,AB=500,AC=400-100=300,由勾股定理得BC=400,所以B(400,100).点A(0,400)关于x轴的对称点A′(0,-400),由两点式得直线A′B的方程为y=x-400.令y=0,得x=320,即点P(320,0).故供水站(点P)在距O点320m处时,到A,B两厂铺设的水管长度之和最短.4
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高考数学一轮复习选修部分几何证明选讲第2讲直线与圆的位置关系知能训练轻松闯关文北师大版选修4_1
高考数学一轮复习第8章平面解析几何第9讲直线与圆锥曲线的位置关系知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第8讲直线与圆锥曲线的位置关系知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第7讲双曲线知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第5讲椭圆知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第4讲直线与圆圆与圆的位置关系知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第4讲直线与圆圆与圆的位置关系知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第3讲圆的方程知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第2讲两直线的位置关系知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角与斜率直线的方程知能训练轻松闯关文北师大版
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2022-08-25 16:57:17
页数:4
价格:¥3
大小:141.00 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划