首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
高考数学一轮复习第8章平面解析几何第6讲抛物线知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第6讲抛物线知能训练轻松闯关理北师大版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第6讲抛物线1.(2022·合肥质量检测)抛物线x2=y的焦点坐标为( )A. B.C.D.解析:选D.抛物线x2=y的焦点坐标是.2.若抛物线y2=2x上一点M到它的焦点F的距离为,O为坐标原点,则△MFO的面积为( )A.B.C.D.解析:选B.由题意知,抛物线准线方程为x=-.设M(a,b),由抛物线的定义可知,点M到准线的距离为,所以a=1,代入抛物线方程y2=2x,解得b=±,所以S△MFO=××=.3.若抛物线y2=2x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为( )A.B.C.D.解析:选A.设抛物线的顶点为O,焦点为F,P(xP,yP),由抛物线的定义知,点P到准线的距离即为点P到焦点的距离,所以|PO|=|PF|,过点P作PM⊥OF于点M(图略),则M为OF的中点,所以xP=,代入y2=2x,得yP=±,所以P.4.直线l过抛物线y2=-2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线的方程是( )A.y2=12xB.y2=-8xC.y2=6xD.y2=-4x解析:选B.设A(x1,y1)、B(x2,y2),由抛物线定义可得|x1|+|x2|+p=8,又AB的中点到6\ny轴的距离为2,即|x1|+|x2|=4,所以p=4,所以y2=-8x.故选B.5.(2022·云南省第一次检测)已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A,B两点,如果·=-12,那么抛物线C的方程为( )A.x2=8yB.x2=4yC.y2=8xD.y2=4x解析:选C.由题意,设抛物线方程为y2=2px(p>0),直线方程为x=my+,联立得y2-2pmy-p2=0,设A(x1,y1),B(x2,y2),得·=x1x2+y1y2=+y1y2=m2y1y2+(y1+y2)++y1y2=-p2=-12⇒p=4,即抛物线C的方程为y2=8x.6.(2022·衡水调研)已知等边△ABF的顶点F是抛物线C1:y2=2px(p>0)的焦点,顶点B在抛物线的准线l上且AB⊥l,则点A的位置( )A.在C1开口内B.在C1上C.在C1开口外D.与p值有关解析:选B.设B,由已知有AB中点的横坐标为,则A,△ABF是边长|AB|=2p的等边三角形,即|AF|==2p,所以p2+m2=4p2,所以m=±p,所以A,代入y2=2px中,得点A在抛物线上,故选B.7.(2022·资阳模拟)顶点在原点,对称轴是y轴,并且经过点P(-4,-2)的抛物线方程是________.解析:设抛物线方程为x2=my,将点P(-4,-2)代入x2=my,得m=-8.所以抛物线方程是x2=-8y.答案:x2=-8y8.(经典考题)如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽________m.解析:建立如图所示的平面直角坐标系,设抛物线方程为x2=-2py(p>0),则A(2,-2),将其坐标代入x2=-2py,得p=1.所以x2=-2y.当水面下降1m,得D(x0,-3)(x0>0),将其坐标代入x2=-2y,得x=6,所以x0=.6\n所以水面宽|CD|=2m.答案:29.(2022·南昌质检)已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,若点A(3,2),则|PA|+|PF|取最小值时,点P的坐标为________.解析:将x=3代入抛物线方程y2=2x,得y=±.因为>2,所以A在抛物线内部.如图,设抛物线上点P到准线l:x=-的距离为d,由定义知|PA|+|PF|=|PA|+d,当PA⊥l时,|PA|+d有最小值,最小值为,即|PA|+|PF|的最小值为,此时点P的纵坐标为2,代入y2=2x,得x=2,所以点P的坐标为(2,2).答案:(2,2)10.(2022·豫东、豫北十校联考)已知抛物线的顶点在原点,焦点在x轴的正半轴上,若抛物线的准线与双曲线5x2-y2=20的两条渐近线围成的三角形的面积为4,则抛物线方程为________.解析:由双曲线方程5x2-y2=20知其渐近线方程为y=±x,由题意可设抛物线方程为y2=2px(p>0),故其准线方程为x=-,设准线与双曲线的两条渐近线的交点为A,B,则不妨令A,B,故S△ABO=×p×=p2=4,解得p2=16,又因为p>0,所以p=4,故抛物线方程为y2=8x.答案:y2=8x11.顶点在原点,焦点在x轴上的抛物线截直线y=2x-4所得的弦长|AB|=3,求此抛物线方程.解:设所求的抛物线方程为y2=ax(a≠0),A(x1,y1),B(x2,y2),把直线y=2x-4代入y2=ax,得4x2-(a+16)x+16=0,由Δ=(a+16)2-256>0,得a>0或a<-32.又x1+x2=,x1x2=4,所以|AB|===3,所以5=45,所以a=4或a=-36.6\n故所求的抛物线方程为y2=4x或y2=-36x.12.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥FA,垂足为N,求点N的坐标.解:(1)抛物线y2=2px的准线为x=-,于是4+=5,所以p=2.所以抛物线方程为y2=4x.(2)因为点A的坐标是(4,4),由题意得B(0,4),M(0,2).又因为F(1,0),所以kFA=,因为MN⊥FA,所以kMN=-.又FA的方程为y=(x-1),①MN的方程为y-2=-x,②联立①②,解得x=,y=,所以点N的坐标为.1.(2022·四川省成都七中一诊)已知抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,若点A(-1,0),则的最小值是( )A.B.C.D.解析:选B.抛物线y2=4x的准线方程为x=-1,如图,过P作PN垂直x=-1于N,由抛物线的定义可知|PF|=|PN|,连接PA,在Rt△PAN中,sin∠PAN=,当=最小时,sin∠PAN最小,即∠PAN最小,即∠PAF最大,此时,PA为抛物线的切线,设PA6\n的方程为y=k(x+1),联立得k2x2+(2k2-4)x+k2=0,所以Δ=(2k2-4)2-4k4=0,解得k=±1,所以∠PAF=∠NPA=45°,==cos∠NPA=,故选B.2.已知抛物线x2=2y,过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为________.解析:由x2=2y,得y=x2,所以y′=x.设P(x1,y1),Q(x2,y2),所以抛物线在P,Q两点处的切线的斜率分别为x1,x2,所以过点P的抛物线的切线方程为y-y1=x1(x-x1),又x=2y1,所以切线方程为y=x1x-,同理可得过点Q的切线方程为y=x2x-,两切线方程联立解得又抛物线焦点F的坐标为,易知直线l的斜率存在,可设直线l的方程为y=mx+,由得x2-2mx-1=0,所以x1x2=-1,所以yA=-.答案:-3.已知圆C过定点F,且与直线x=相切,圆心C的轨迹为E,曲线E与直线l:y=k(x+1)(k∈R)相交于A,B两点.(1)求曲线E的方程;(2)当△OAB的面积等于时,求k的值.解:(1)由题意,点C到定点F和直线x=的距离相等,故点C的轨迹E的方程为y2=-x.(2)由方程组消去x后,整理得ky2+y-k=0.设A(x1,y1),B(x2,y2),由根与系数的关系有y1+y2=-,y1y2=-1.设直线l与x轴交于点N,则N(-1,0).所以S△OAB=S△OAN+S△OBN=|ON||y1|+|ON||y2|,6\n=|ON||y1-y2|=×1×=.因为S△OAB=,所以=,解得k=±.4.(2022·石家庄一模)在平面直角坐标系xOy中,一动圆经过点且与直线x=-相切,设该动圆圆心的轨迹为曲线E.(1)求曲线E的方程;(2)设P是曲线E上的动点,点B,C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,求△PBC面积的最小值.解:(1)由题意可知圆心到的距离等于到直线x=-的距离,由抛物线的定义可知圆心的轨迹方程为y2=2x.(2)设P(x0,y0),B(0,b),C(0,c),直线PB的方程为(y0-b)x-x0y+x0b=0,又圆心(1,0)到PB的距离为1,=1,整理得(x0-2)b2+2y0b-x0=0,同理可得(x0-2)c2+2y0c-x0=0,所以b,c是方程(x0-2)x2+2y0x-x0=0的两根,所以b+c=,bc=,依题意得bc<0,即x0>2,则(b-c)2=,因为y=2x0,所以|b-c|=,所以S=|b-c||x0|=(x0-2)++4≥8,当x0=4时,不等式等号成立,所以△PBC面积的最小值为8.6
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高考数学一轮复习第8章平面解析几何第9讲直线与圆锥曲线的位置关系知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第8讲曲线与方程知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第7讲双曲线知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第7讲双曲线知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第6讲抛物线知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第5讲椭圆知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第5讲椭圆知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第3讲圆的方程知能训练轻松闯关理北师大版
高考数学一轮复习第8章平面解析几何第3讲圆的方程知能训练轻松闯关文北师大版
高考数学一轮复习第8章平面解析几何第2讲两直线的位置关系知能训练轻松闯关理北师大版
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2022-08-25 16:57:20
页数:6
价格:¥3
大小:134.45 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划