首页

高考数学一轮复习第8章平面解析几何第8讲曲线与方程知能训练轻松闯关理北师大版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

第8讲曲线与方程1.方程(x-y)2+(xy-1)2=0表示的曲线是(  )A.一条直线和一条双曲线B.两条双曲线C.两个点D.以上答案都不对解析:选C.(x-y)2+(xy-1)2=0⇔故或2.设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为(  )A.抛物线       B.双曲线C.椭圆D.圆解析:选A.设圆C的半径为r,则圆心C到直线y=0的距离为r.由两圆外切可得,圆心C到点(0,3)的距离为r+1,也就是说,圆心C到点(0,3)的距离比到直线y=0的距离大1,故点C到点(0,3)的距离和它到直线y=-1的距离相等,符合抛物线的特征,故点C的轨迹为抛物线.3.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为(  )A.y2=2xB.(x-1)2+y2=4C.y2=-2xD.(x-1)2+y2=2解析:选D.如图,设P(x,y),圆心为M(1,0).连接MA,则MA⊥PA,且|MA|=1,又因为|PA|=1,所以|PM|==,即|PM|2=2,所以(x-1)2+y2=2.4.(2022·珠海模拟)已知点A(1,0),直线l:y=2x-4,点R是直线l上的一点,若=,则点P的轨迹方程为(  )A.y=-2xB.y=2xC.y=2x-8D.y=2x+47\n解析:选B.设P(x,y),R(x1,y1),由=知,点A是线段RP的中点,所以即因为点R(x1,y1)在直线y=2x-4上,所以y1=2x1-4,所以-y=2(2-x)-4,即y=2x.5.设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,则动点M(x,y)的轨迹为(  )A.两条直线B.圆或椭圆C.双曲线D.两条直线或圆或椭圆或双曲线解析:选D.因为a⊥b,a=(mx,y+1),b=(x,y-1),所以a·b=mx2+y2-1=0即mx2+y2=1.当m=0时,动点M的轨迹为两条直线,y=±1,当m=1时,动点M的轨迹为圆x2+y2=1,当m>0且m≠1时,动点M的轨迹为椭圆+y2=1,当m<0时,动点M的轨迹为双曲线y2-=1.6.(2022·长春模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为(  )A.-=1B.+=1C.-=1D.+=1解析:选D.因为M为AQ垂直平分线上一点,则|AM|=|MQ|,所以|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹为椭圆.所以a=,c=1,则b2=a2-c2=,所以椭圆的方程为+=1.7.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P7\n的轨迹方程是________.解析:设P(x,y),因为△MPN为直角三角形,所以|MP|2+|NP|2=|MN|2,所以(x+2)2+y2+(x-2)2+y2=16,整理得,x2+y2=4.因为M,N,P不共线,所以x≠±2,所以轨迹方程为x2+y2=4(x≠±2).答案:x2+y2=4(x≠±2)8.已知点P是圆C:(x+2)2+y2=4上的动点,定点F(2,0),线段PF的垂直平分线与直线CP的交点为Q,则点Q(x,y)的轨迹方程是________.解析:依题意有|QP|=|QF|,则||QC|-|QF||=|CP|=2,又|CF|=4>2,故点Q的轨迹是以C、F为焦点的双曲线,a=1,c=2,得b2=3,所求轨迹方程为x2-=1.答案:x2-=19.已知P是椭圆+=1(a>b>0)上的任意一点,F1、F2是它的两个焦点,O为坐标原点,=+,则动点Q的轨迹方程是________.解析:=+,如图,+==2=-2,设Q(x,y),则=-=-(x,y)=,即P点坐标为,又P在椭圆上,则有+=1,即+=1.7\n答案:+=110.曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于a2.其中,所有正确结论的序号是________.解析:设曲线C上任一点P(x,y),由|PF1|·|PF2|=a2,可得·=a2(a>1),将原点(0,0)代入等式不成立,故①不正确.因为点P(x,y)在曲线C上,则点P关于原点的对称点为P′(-x,-y),将P′代入曲线C的方程等式成立,故②正确.设∠F1PF2=θ,则S△F1PF2=|PF1||PF2|·sinθ=a2sinθ≤a2,故③正确.答案:②③11.已知点A(-1,0),B(2,4),△ABC的面积为10,求动点C的轨迹方程.解:因为|AB|==5,所以AB边上高h==4.故C的轨迹是与直线AB距离等于4的两条平行线.因为kAB=,AB的方程为4x-3y+4=0,可设轨迹方程为4x-3y+c=0.由=4,得c=24或c=-16,故动点C的轨迹方程为4x-3y-16=0或4x-3y+24=0.12.(2022·高考广东卷节选)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程.解:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,所以圆C1的圆心坐标为C1(3,0). (2)设M(x,y),因为A,B为过原点的直线l与圆C1的交点,且M为AB的中点,所以由圆的性质知:MC1⊥MO,所以·=0.又因为=(3-x,-y),=(-x,-y),所以由向量的数量积公式得x2-3x+y2=0.易知直线l的斜率存在,所以设直线l的方程为y=mx,当直线l与圆C1相切时,d==2,7\n解得m=±.把相切时直线l的方程代入圆C1的方程化简得9x2-30x+25=0,解得x=.当直线l经过圆C1的圆心时,M的坐标为(3,0). 又因为直线l与圆C1交于A,B两点,M为AB的中点,所以<x≤3.所以点M的轨迹C的方程为x2-3x+y2=0,其中<x≤3,其轨迹为一段圆弧.1.(2022·成都质量检测)在棱长为1的正方体ABCDA′B′C′D′中,若点P是棱上一点,则满足|PA|+|PC′|=2的点P的个数为(  )A.4B.6C.8D.12解析:选B.因为正方体的棱长为1,所以AC′=.因为|PA|+|PC′|=2,所以点P是以2c=为焦距,以a=1为长半轴,以为短半轴的椭球上.因为P在正方体的棱上,所以P应是椭球与正方体的棱的交点.结合正方体的性质可知,在棱B′C′,C′D′,CC′,AA′,AB,AD上各有一点满足条件.故选B.2.已知点A,B分别是射线l1:y=x(x≥0),l2:y=-x(x≥0)上的动点,O为坐标原点,且△OAB的面积为定值2,则线段AB中点M的轨迹方程为________.解析:由题意可设A(x1,x1),B(x2,-x2),M(x,y), 其中x1>0,x2>0,则因为△OAB的面积为定值2,所以S△OAB=OA·OB=(x1)(x2)=x1x2=2.①2-②2得x2-y2=x1x2,而x1x2=2,所以x2-y2=2.由于x1>0,x2>0,所以x>0,即所求点M的轨迹方程为x2-y2=2(x>0).7\n答案:x2-y2=2(x>0)3.(2022·唐山模拟)已知P为圆A:(x+1)2+y2=8上的动点,点B(1,0).线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P在第一象限,且cos∠BAP=时,求点M的坐标.解:(1)圆A的圆心为A(-1,0),半径等于2.由已知|MB|=|MP|,于是|MA|+|MB|=|MA|+|MP|=2>2=|AB|,故曲线Γ是以A,B为焦点,以2为长轴长的椭圆,即a=,c=1,b=1,所以曲线Γ的方程为+y2=1.(2)由cos∠BAP=,|AP|=2,得P.于是直线AP的方程为y=(x+1).由整理得5x2+2x-7=0,解得x1=1,x2=-.由于点M在线段AP上,所以点M坐标为.4.(2022·郑州质检)已知动点P到定点F(1,0)和到直线x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A、B两点,直线l:y=mx+n与曲线E交于C、D两点,与线段AB相交于一点(与A、B不重合).(1)求曲线E的方程;(2)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值?若有,求出其最大值及对应的直线l的方程;若没有,请说明理由.解:(1)设点P(x,y),由题意可得,=,整理可得+y2=1.所以曲线E的方程是+y2=1.(2)设C(x1,y1),D(x2,y2),由已知可得|AB|=.当m=0时,不合题意.7\n当m≠0时,由直线l与圆x2+y2=1相切,可得=1,即m2+1=n2.联立消去y得x2+2mnx+n2-1=0,Δ=4m2n2-4(n2-1)=2m2>0,x1=,x2=,S四边形ACBD=|AB||x2-x1|==≤,当且仅当2|m|=,即m=±时等号成立,此时n=±,经检验可知,直线y=x-和直线y=-x+符合题意.7

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 16:57:21 页数:7
价格:¥3 大小:147.91 KB
文章作者:U-336598

推荐特供

MORE