首页

2023高考数学统考一轮复习第3章导数及其应用命题探秘1第2课时利用导数研究不等式恒能成立问题教师用书教案理新人教版202303081216

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

第2课时 利用导数研究不等式恒(能)成立问题技法阐释用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.1.分离参数法一般地,若a>f(x)对x∈D恒成立,则只需a>f(x)max;若a<f(x)对x∈D恒成立,则只需a<f(x)min.若存在x0∈D,使a>f(x0)成立,则只需a>f(x)min;若存在x0∈D,使a<f(x0)成立,则只需a<f(x0)max.由此构造不等式,求解参数的取值范围.2.构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.高考示例(2020·全国卷Ⅰ)已知函数f(x)=ex+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥x3+1,求a的取值范围.\n技法一 分离参数法解决不等式恒成立问题[典例1](2020·石家庄模拟)已知函数f(x)=axex-(a+1)(2x-1).(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程;(2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.[思维流程] \n[解] (1)若a=1,则f(x)=xex-2(2x-1).即f′(x)=xex+ex-4,则f′(0)=-3,f(0)=2,所以所求切线方程为3x+y-2=0.(2)由f(1)≥0,得a≥>0,则f(x)≥0对任意的x>0恒成立可转化为≥对任意的x>0恒成立.设函数F(x)=(x>0),则F′(x)=-.当0<x<1时,F′(x)>0;当x>1时,F′(x)<0,所以函数F(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以F(x)max=F(1)=.于是≥,解得a≥.故实数a的取值范围是.点评:利用分离参数法来确定不等式f(x,λ)≥0(x∈D,λ为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f1(λ)≥f2(x)或f1(λ)≤f2(x)的形式.(2)求f2(x)在x∈D时的最大值或最小值.(3)解不等式f1(λ)≥f2(x)max或f1(λ)≤f2(x)min,得到λ的取值范围.已知函数f(x)=.(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;\n(2)当x≥1时,不等式f(x)≥恒成立,求实数k的取值范围.[解] (1)函数f(x)的定义域为(0,+∞),f′(x)==-,令f′(x)=0,得x=1.当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以x=1为函数f(x)的极大值点,且是唯一的极值点,所以0<a<1<a+,故<a<1,即实数a的取值范围为.(2)由题意得,当x≥1时,k≤恒成立,令g(x)=(x≥1),则g′(x)==.再令h(x)=x-lnx(x≥1),则h′(x)=1-≥0,所以h(x)≥h(1)=1,所以g′(x)>0,所以g(x)在[1,+∞)上单调递增,所以g(x)≥g(1)=2,故k≤2,即实数k的取值范围是(-∞,2].技法二 构造函数分类讨论法解决不等式恒成立问题[典例2](2020·合肥六校联考)已知函数f(x)=(x+a-1)ex,g(x)=x2+ax,其中a为常数.(1)当a=2时,求函数f(x)在点(0,f(0))处的切线方程;(2)若对任意的x∈[0,+∞),不等式f(x)≥g(x)恒成立,求实数a的取值范围.[思维流程] \n[解] (1)因为a=2,所以f(x)=(x+1)ex,所以f(0)=1,f′(x)=(x+2)ex,所以f′(0)=2,所以所求切线方程为2x-y+1=0.(2)令h(x)=f(x)-g(x),由题意得h(x)min≥0在x∈[0,+∞)上恒成立,因为h(x)=(x+a-1)ex-x2-ax,所以h′(x)=(x+a)(ex-1).①若a≥0,则当x∈[0,+∞)时,h′(x)≥0,所以函数h(x)在[0,+∞)上单调递增,所以h(x)min=h(0)=a-1,则a-1≥0,得a≥1.②若a<0,则当x∈[0,-a)时,h′(x)≤0;当x∈(-a,+∞)时,h′(x)>0,所以函数h(x)在[0,-a)上单调递减,在(-a,+∞)上单调递增,所以h(x)min=h(-a),又因为h(-a)<h(0)=a-1<0,所以不合题意.综上,实数a的取值范围为[1,+∞).点评:对于f(x)≥g(x)型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h(x)=f(x)-g(x)或h(x)=g(x)-f(x),进而只需满足h(x)min≥0或h(x)max≤0即可.设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.[解] (1)f′(x)=(1-2x-x2)ex,令f′(x)=0,得x=-1±,当x∈(-∞,-1-)时,f′(x)<0;当x∈(-1-,-1+)时,f′(x)>0;当x∈(-1+,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)ex-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)ex-a,令h(x)=(1-x2-2x)ex-a,\n则h′(x)=-(x2+4x+1)ex,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).技法三 分离参数或构造函数解决不等式能成立问题[典例3] 已知函数f(x)=x-alnx,g(x)=-(a∈R),若在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.[思维流程] [解] 依题意,只需[f(x0)-g(x0)]min<0,x0∈[1,e]即可.令h(x)=f(x)-g(x)=x-alnx+,x∈[1,e],则h′(x)=1--==.令h′(x)=0,得x=a+1.①若a+1≤1,即a≤0时,h′(x)≥0,h(x)单调递增,h(x)min=h(1)=a+2<0,得a<-2;②若1<a+1<e,即0<a<e-1时,h(x)在[1,a+1)上单调递减,在(a+1,e]上单调递增,故h(x)min=h(a+1)=(a+1)-aln(a+1)+1=a[1-ln(a+1)]+2>2,x∈(0,e-1)与h(x)<0不符,故舍去.③若a+1≥e,即a≥e-1时,h(x)在[1,e]上单调递减,则h(x)min=h(e)=e-a+<0,得a>>e-1成立.综上所述,a的取值范围为(-∞,-2)∪.点评:能成立问题一般是通过分离参数或移项作差构造函数来解决,能成立问题中等价转化有以下几种形式:(1)存在x∈[a,b],f(x)≥a成立⇔f(x)max≥a.(2)存在x∈[a,b],f(x)≤a成立⇔f(x)min≤a.(3)存在x1∈[a,b],对任意x2∈[a,b],f(x1)≤g(x2)成立⇔f(x)min≤g(x)min.\n已知函数f(x)=3lnx-x2+x,g(x)=3x+a.(1)若f(x)与g(x)的图象相切,求a的值;(2)若∃x0>0,使f(x0)>g(x0)成立,求参数a的取值范围.[解] (1)由题意得,f′(x)=-x+1,g′(x)=3,设切点为(x0,f(x0)),则k=f′(x0)=-x0+1=3,解得x0=1或x0=-3(舍),所以切点为,代入g(x)=3x+a,得a=-.(2)设h(x)=3lnx-x2-2x.∃x0>0,使f(x0)>g(x0)成立,等价于∃x>0,使h(x)=3lnx-x2-2x>a成立,等价于a<h(x)max(x>0).因为h′(x)=-x-2==-,令得0<x<1;令得x>1.所以函数h(x)=3lnx-x2-2x在(0,1)上单调递增,在(1,+∞)上单调递减,所以h(x)max=h(1)=-,即a<-,因此参数a的取值范围为.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

其他相关资源

文档下载

发布时间:2022-08-25 17:30:54 页数:7
价格:¥3 大小:476.00 KB
文章作者:U-336598

推荐特供

MORE