首页

2023高考数学统考一轮复习第3章导数及其应用命题探秘1第3课时利用导数解决函数的零点问题教师用书教案理新人教版202303081217

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第3课时 利用导数解决函数的零点问题技法阐释1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值式结构函数零点个数(或方程根的个数)问题的一般思路(1)可转化为用导数研究其函数的图象与x轴(或直线y=k)在该区间上的交点问题;(2)证明有几个零点时,需要利用导数研究函数的单调性,确定分类讨论的标准,确定函数在每一个区间上的极值(最值)、端点函数值等性质,进而画出函数的大致图象.再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.2.证明复杂方程在某区间上有且仅有一解的步骤第一步,利用导数证明该函数在该区间上单调;第二步,证明端点的导数值异号.3.已知函数有零点求参数范围常用的方法(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出构造的新函数的最值,最后根据题设条件构建关于参数的不等式,确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.高考示例思维过程(2020·全国卷Ⅲ)设函数f(x)=x3+bx+c,曲线y=f(x)在点处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.依题意得f′=0,即+b=0,故b=-.[解] (1)f′(x)=3x2+b.(2)证明:由(1)知f(x)=x3-x+c,f′(x)=3x2-.令f′(x)=0,解得x=-或x=.→f′(x)与f(x)的情况为:\n技法一 讨论或证明函数零点的个数[典例1] (2019·全国卷Ⅰ)已知函数f(x)=sinx-ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间存在唯一极大值点;(2)f(x)有且仅有2个零点.[思维流程] \n[证明] (1)设g(x)=f′(x),则g(x)=cosx-,g′(x)=-sinx+.当x∈时,g′(x)单调递减,而g′(0)>0,g′<0,可得g′(x)在有唯一零点,设为α.则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0.所以g(x)在(-1,α)单调递增,在单调递减,故g(x)在存在唯一极大值点,即f′(x)在存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(ⅰ)当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)单调递增,而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]的唯一零点.(ⅱ)当x∈时,由(1)知,f′(x)在(0,α)单调递增,在单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)单调递增,在单调递减.又f(0)=0,f=1-ln>0,所以当x∈时,f(x)>0.从而,f(x)在没有零点.(ⅲ)当x∈时,f′(x)<0,所以f(x)在单调递减.而f>0,f(π)<0,所以f(x)在有唯一零点.(ⅳ)当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)没有零点.综上,f(x)有且仅有2个零点.点评:根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”.设函数f(x)=lnx+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;\n(2)讨论函数g(x)=f′(x)-零点的个数.[解] (1)由题意知,当m=e时,f(x)=lnx+(x>0),则f′(x)=,∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=lne+=2,∴f(x)的极小值为2.(2)由题意知g(x)=f′(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1).当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=,又∵φ(0)=0.结合y=φ(x)的图象(如图),可知,①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;\n当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.技法二 已知函数零点个数求参数的取值范围[典例2](2020·全国卷Ⅰ)已知函数f(x)=ex-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[思维流程] [解] (1)当a=1时,f(x)=ex-x-2,则f′(x)=ex-1.当x<0时,f′(x)<0;当x>0时,f′(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f′(x)=ex-a.当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)单调递增,故f(x)至多存在一个零点,不合题意.当a>0时,由f′(x)=0可得x=lna.当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.所以f(x)在(-∞,lna)单调递减,在(lna,+∞)单调递增.故当x=lna时,f(x)取得最小值,最小值为f(lna)=-a(1+lna).(ⅰ)若0<a≤,则f(lna)≥0,f(x)在(-∞,+∞)至多存在一个零点,不合题意.(ⅱ)若a>,则f(lna)<0.由于f(-2)=e-2>0,所以f(x)在(-∞,lna)存在唯一零点.由(1)知,当x>2时,ex-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e·e-a(x+2)>eln(2a)·-a(x+2)=2a>0.故f(x)在(lna,+∞)存在唯一零点.从而f(x)在(-∞,+∞)有两个零点.综上,a的取值范围是.点评:与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.\n(2020·贵阳模拟)已知函数f(x)=kx-lnx(k>0).(1)若k=1,求f(x)的单调区间;(2)若函数f(x)有且只有一个零点,求实数k的值.[解] (1)若k=1,则f(x)=x-lnx,定义域为(0,+∞),则f′(x)=1-,由f′(x)>0,得x>1;由f′(x)<0,得0<x<1,∴f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)法一:由题意知,方程kx-lnx=0仅有一个实根,由kx-lnx=0,得k=(x>0).令g(x)=(x>0),则g′(x)=,当x=e时,g′(x)=0;当0<x<e时,g′(x)>0;当x>e时,g′(x)<0.∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴g(x)max=g(e)=.当x→+∞时,g(x)→0.又∵k>0,∴要使f(x)仅有一个零点,则k=.法二:f(x)=kx-lnx,f′(x)=k-=(x>0,k>0).当x=时,f′(x)=0;当0<x<时,f′(x)<0;当x>时,f′(x)>0.∴f(x)在上单调递减,在上单调递增,∴f(x)min=f=1-ln,∵f(x)有且只有一个零点,∴1-ln=0,即k=.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 17:30:54 页数:6
价格:¥3 大小:335.00 KB
文章作者:U-336598

推荐特供

MORE