首页

2023高考数学统考一轮复习课后限时集训37数列的概念与简单表示法理含解析新人教版202302272144

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

课后限时集训(三十七) 数列的概念与简单表示法建议用时:40分钟一、选择题1.已知数列,,,…,,,则3是这个数列的(  )A.第20项B.第21项C.第22项D.第23项C [由题意知,数列的通项公式为an=,令=3得n=22,故选C.]2.设数列{an}的前n项和Sn=n2,则a8的值为(  )A.15B.16C.49D.64A [当n=8时,a8=S8-S7=82-72=15.]3.数列{an}中,an+1=2an+1,a1=1,则a6=(  )A.32B.62C.63D.64C [数列{an}中,an+1=2an+1,故an+1+1=2(an+1),因为a1=1,故a1+1=2≠0,故an+1≠0,所以=2,所以{an+1}是首项为2,公比为2的等比数列.所以an+1=2n,即an=2n-1,故a6=63,故选C.]4.(2020·柳州模拟)若数列{an}满足a1=2,an+1=,则a2020的值为(  )A.2B.-3C.-D.D [由题意知,a2==-3,a3==-,a4==,a5==2,a6==-3,…,因此数列{an}是周期为4的周期数列,∴a2020=a505×4=a4=.故选D.]5.已知各项都为正数的数列{an}满足a-an+1an-2a=0,且a1=2,则数列{an}的通项公式为(  )A.an=2n-1B.an=3n-1C.an=2nD.an=3nC [∵a-an+1an-2a=0,\n∴(an+1+an)(an+1-2an)=0.∵数列{an}的各项均为正数,∴an+1+an>0,∴an+1-2an=0,即an+1=2an(n∈N*),∴数列{an}是以2为公比的等比数列.∵a1=2,∴an=2n.]6.记Sn为数列{an}的前n项和.“任意正整数n,均有an>0”是“{Sn}是递增数列”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A [∵“an>0”⇒“数列{Sn}是递增数列”,∴“an>0”是“数列{Sn}是递增数列”的充分条件.如数列{an}为-1,1,3,5,7,9,…,显然数列{Sn}是递增数列,但是an不一定大于零,还有可能小于零,∴“数列{Sn}是递增数列”不能推出“an>0”,∴“an>0”是“数列{Sn}是递增数列”的不必要条件.∴“an>0”是“数列{Sn}是递增数列”的充分不必要条件.]二、填空题7.若数列{an}的前n项和Sn=n2-n,则数列{an}的通项公式an=.n-1 [当n=1时,a1=S1=.当n≥2时,an=Sn-Sn-1=n2-n-=-1.又a1=适合上式,则an=n-1.]8.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=.- [∵an+1=Sn+1-Sn,an+1=SnSn+1,∴Sn+1-Sn=SnSn+1.∵Sn≠0,∴-=1,即-=-1.又=-1,∴是首项为-1,公差为-1的等差数列.\n∴=-1+(n-1)×(-1)=-n,∴Sn=-.]9.若数列{an}的前n项和Sn=n2-10n(n∈N*),则数列{an}的通项公式an=,数列{nan}中数值最小的项是第项.2n-11(n∈N*) 3 [∵Sn=n2-10n,∴当n≥2时,an=Sn-Sn-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴an=2n-11(n∈N*).记f(n)=nan=n(2n-11)=2n2-11n,此函数图象的对称轴为直线n=,但n∈N*,∴当n=3时,f(n)取最小值.∴数列{nan}中数值最小的项是第3项.]三、解答题10.已知各项都为正数的数列{an}满足a1=1,a-(2an+1-1)an-2an+1=0.(1)求a2,a3;(2)求{an}的通项公式.[解] (1)由题意可得a2=,a3=.(2)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).因为{an}的各项都为正数,所以=.故{an}是首项为1,公比为的等比数列,因此an=.11.已知数列{an}满足a1=50,an+1=an+2n(n∈N*),(1)求{an}的通项公式;(2)已知数列{bn}的前n项和为an,若bm=50,求正整数m的值.[解] (1)当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50\n=2×+50=n2-n+50.又a1=50=12-1+50,∴{an}的通项公式为an=n2-n+50,n∈N*.(2)b1=a1=50,当n≥2时,bn=an-an-1=n2-n+50-[(n-1)2-(n-1)+50]=2n-2,即bn=当m≥2时,令bm=50,得2m-2=50,解得m=26.又b1=50,∴正整数m的值为1或26.1.(2020·大同模拟)古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,…,我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示,顶上一层1个球,下一层3个球,再下一层6个球,…).若一“落一形”三角锥垛有10层,则该堆垛总共球的个数为(  )三角锥垛A.55B.220C.285D.385B [数列{an}如1,3,6,10,15,…,可得通项公式an=.∴Sn=+=+.n=10时,可得S10=+=220.故选B.]2.(2020·承德模拟)设数列{an}的前n项和为Sn,且∀n∈N*,an+1>an,Sn≥S6.请写出一个满足条件的数列{an}的通项公式an=.n-6,n∈N*(答案不唯一) [由∀n∈N*,an+1>an可知数列{an}是递增数列,又Sn≥S6\n,故数列{an}从第7项开始为正.而a6≤0,因此不妨设数列是等差数列,公差为1,a6=0,所以an=n-6,n∈N*.(答案不唯一)]3.已知数列{an}中,a1=1,其前n项和为Sn,且满足2Sn=(n+1)an(n∈N*).(1)求数列{an}的通项公式;(2)记bn=3n-λa,若数列{bn}为递增数列,求λ的取值范围.[解] (1)∵2Sn=(n+1)an,∴2Sn+1=(n+2)an+1,∴2an+1=(n+2)an+1-(n+1)an,即nan+1=(n+1)an,∴=,∴==…==1,∴an=n(n∈N*).(2)由(1)知bn=3n-λn2.bn+1-bn=3n+1-λ(n+1)2-(3n-λn2)=2·3n-λ(2n+1).∵数列{bn}为递增数列,∴2·3n-λ(2n+1)>0,即λ<.令cn=,即=·=>1.∴{cn}为递增数列,∴λ<c1=2,即λ的取值范围为(-∞,2).

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 17:31:21 页数:5
价格:¥3 大小:149.50 KB
文章作者:U-336598

推荐特供

MORE