首页

【红对勾】(新课标)2023高考数学大一轮复习 圆锥曲线中的最值、范围与定值、定点问题课时作业 理.DOC

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

课时作业62 圆锥曲线中的最值、范围与定值、定点问题1.已知椭圆C过点M,点F(-,0)是椭圆的左焦点,点P,Q是椭圆C上的两个动点,且|PF|,|MF|,|QF|成等差数列.(1)求椭圆C的标准方程;(2)求证:线段PQ的垂直平分线经过一个定点A.解:(1)设椭圆C的方程为+=1(a>b>0),由已知,得解得∴椭圆的标准方程为+=1.(2)证明:设P(x1,y1),Q(x2,y2),由椭圆的标准方程为+=1,可知|PF|===2+x1,同理|QF|=2+x2,|MF|==2+,∵2|MF|=|PF|+|QF|,∴2=4+(x1+x2),∴x1+x2=2.(ⅰ)当x1≠x2时,由得x-x+2(y-y)=0,∴=-·.设线段PQ的中点为N(1,n),由kPQ==-,得线段PQ的中垂线方程为y-n=2n(x-1),∴(2x-1)n-y=0,该直线恒过一定点A.(ⅱ)当x1=x2时,P,Q或P,Q,5\n线段PQ的中垂线是x轴,也过点A.综上,线段PQ的中垂线过定点A.2.已知椭圆+=1(a>b>0)的离心率为,且过点(2,).(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若kAC·kBD=-.求证:四边形ABCD的面积为定值.解:(1)由题意e==,+=1,又a2=b2+c2,解得a2=8,b2=4,故椭圆的标准方程为+=1.(2)证明:设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),联立得(1+2k2)x2+4kmx+2m2-8=0,Δ=(4km)2-4(1+2k2)(2m2-8)=8(8k2-m2+4)>0,①由根与系数的关系得∵kAC·kBD=-=-,∴=-,∴y1y2=-x1x2=-·=-.又y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2+km+m2=,∴-=,∴-(m2-4)=m2-8k2,∴4k2+2=m2.设原点到直线AB的距离为d,则5\nS△AOB=|AB|·d=·|x2-x1|·====2,∴S四边形ABCD=4S△AOB=8,即四边形ABCD的面积为定值.3.在平面直角坐标系xOy中,动点P到两点(-,0),(,0)的距离之和等于4,设点P的轨迹为曲线C,直线l过点E(-1,0)且与曲线C交于A,B两点.(1)求曲线C的轨迹方程;(2)△AOB的面积是否存在最大值,若存在,求出△AOB的面积的最大值;若不存在,说明理由.解:(1)由椭圆定义可知,点P的轨迹C是以(-,0),(,0)为焦点,长半轴长为2的椭圆.故曲线C的轨迹方程为+y2=1.(2)△AOB的面积存在最大值.因为直线l过点E(-1,0),所以可设直线l的方程为x=my-1或y=0(舍).由整理得(m2+4)y2-2my-3=0,Δ=(2m)2+12(m2+4)>0.设点A(x1,y1),B(x2,y2),其中y1>y2.解得y1=,y2=.则|y2-y1|=.因为S△AOB=|OE|·|y1-y2|==.设t=,t≥,g(t)=t+,则g′(t)=1-,故当t≥时,g′(t)>0恒成立,则g(t)在区间[,+∞)上为增函数,所以g(t)≥g()=.所以S△AOB≤,当且仅当m=0时取等号.5\n所以S△AOB的最大值为.1.(2014·新课标全国卷Ⅰ)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.解:(1)设F(c,0),由条件知,=,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=.所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0.所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.5\n2.已知椭圆+=1(a>b>0)经过点M(,1),离心率为.(1)求椭圆的标准方程.(2)已知点P(,0),若A,B为已知椭圆上两动点,且满足·=-2,试问直线AB是否恒过定点?若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.解:(1)由题意得=,①因为椭圆经过点M(,1),所以+=1.②又a2=b2+c2,③由①②③,解得a2=8,b2=c2=4.所以椭圆方程为+=1.(2)①当直线AB与x轴不垂直时,设直线的方程为y=kx+m,代入+=1,消去y整理得(2k2+1)x2+4kmx+2m2-8=0.由Δ>0,得8k2+4-m2>0,(*)设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.所以·=(x1-)(x2-)+y1y2=(x1-)(x2-)+(kx1+m)(kx2+m)=(k2+1)x1x2+(km-)(x1+x2)+6+m2=-2,得(k2+1)x1x2+(km-)(x1+x2)+8+m2=0,(k2+1)·+(km-)·+8+m2=0,整理得(m+2k)2=0,从而m=-k,且满足(*),所以直线AB的方程为y=k,故直线AB经过定点.②当直线AB与x轴垂直时,若直线为x=,此时点A,B的坐标分别为,,亦有·=-2.综上,直线AB经过定点.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 17:48:22 页数:5
价格:¥3 大小:100.00 KB
文章作者:U-336598

推荐特供

MORE