首页

【红对勾】(新课标)2023高考数学大一轮复习 导数与函数的综合问题课时作业 理.DOC

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

课时作业16 高考中导数与函数的综合问题一、选择题1.已知函数f(x)=x3-x2-x,则f(-a2)与f(-1)的大小关系为(  )A.f(-a2)≤f(-1)B.f(-a2)<f(-1)C.f(-a2)≥f(-1)D.f(-a2)与f(-1)的大小关系不确定解析:由题意可得f′(x)=x2-2x-,令f′(x)=(3x-7)(x+1)=0,得x=-1或x=.当x<-1时,f′(x)>0,f(x)为增函数;当-1<x<时,f′(x)<0,f(x)为减函数.所以f(-1)是函数f(x)在(-∞,0]上的最大值,又因为-a2≤0,所以f(-a2)≤f(-1).答案:A2.若不等式2xlnx≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是(  )A.(-∞,0)B.(-∞,4]C.(0,+∞)D.[4,+∞)解析:2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4.所以a≤h(x)min=4.答案:B3.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(  )A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析:由已知,[f(x)-(2x+4)]′=f′(x)-2>0,∴g(x)=f(x)-(2x+4)单调递增,又g(-1)=0,∴f(x)>2x+4的解集是(-1,+∞).答案:B6\n4.若函数y=aex+3x(x∈R,a∈R),有大于零的极值点,则实数a的取值范围是(  )A.(-3,0)B.(-∞,-3)C.D.解析:由题可得y′=aex+3,若函数在x∈R上有大于零的极值点,即y′=aex+3=0有正根,显然有a<0,此时x=ln.由x>0,得参数a的范围为a>-3.综上知,-3<a<0.答案:A5.函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是(  )A.20B.18C.3D.0解析:因为f′(x)=3x2-3=3(x-1)(x+1),令f′(x)=0,得x=±1,所以-1,1为函数的极值点.又f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,所以在区间[-3,2]上f(x)max=1,f(x)min=-19.又由题设知在区间[-3,2]上f(x)max-f(x)min≤t,从而t≥20,所以t的最小值是20.答案:A6.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a,b,若a<b,则必有(  )A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b)D.bf(b)≤f(a)解析:∵xf′(x)≤-f(x),f(x)≥0,∴′=≤≤0.则函数在(0,+∞)上是单调递减的,由于0<a<b,则≥.即af(b)≤bf(a).答案:A二、填空题7.电动自行车的耗电量y与速度x之间有关系y=x3-x2-40x(x>0),为使耗电量最小,则速度应定为________.解析:由y′=x2-39x-40=0,得x=-1或x=40,由于0<x<40时,y′<0;6\n当x>40时,y′>0.所以当x=40时,y有最小值.答案:408.函数f(x)=ax3+x恰有三个单调区间,则a的取值范围是________.解析:f(x)=ax3+x恰有三个单调区间,即函数f(x)恰有两个极值点,即f′(x)=0有两个不等实根.∵f(x)=ax3+x,∴f′(x)=3ax2+1.要使f′(x)=0有两个不等实根,则a<0.答案:(-∞,0)9.设函数f(x)=6lnx,g(x)=x2-4x+4,则方程f(x)-g(x)=0有________个实根.解析:设φ(x)=g(x)-f(x)=x2-4x+4-6lnx,则φ′(x)==,且x>0.由φ′(x)=0,得x=3.当0<x<3时,φ′(x)<0;当x>3时,φ′(x)>0.∴φ(x)在(0,+∞)上有极小值φ(3)=1-6ln3<0.故y=φ(x)的图象与x轴有两个交点,则方程f(x)-g(x)=0有两个实根.答案:2三、解答题10.某种产品每件成本为6元,每件售价为x元(6<x<11),年销售为u万件,若已知-u与2成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于售价x的函数关系式;(2)求售价为多少时,年利润最大,并求出最大年利润.解:(1)设-u=k2,∵售价为10元时,年销量为28万件,∴-28=k2,解得k=2.∴u=-22+=-2x2+21x+18.∴y=(-2x2+21x+18)(x-6)=-2x3+33x2-108x-108(6<x<11).(2)y′=-6x2+66x-108=-6(x2-11x+18)=-6(x-2)(x-9).令y′=0,得x=2(舍去)或x=9,显然,当x∈(6,9)时,y′>0;6\n当x∈(9,11)时,y′<0.∴函数y=-2x3+33x2-108x-108在(6,9)上是递增的,在(9,11)上是递减的.∴当x=9时,y取最大值,且ymax=135,∴售价为9元时,年利润最大,最大年利润为135万元.11.已知函数f(x)=ex-m-x,其中m为常数.(1)若对任意x∈R有f(x)≥0成立,求m的取值范围;(2)当m>1时,判断f(x)在[0,2m]上零点的个数,并说明理由.解:(1)依题意,可知f(x)在R上连续,且f′(x)=ex-m-1,令f′(x)=0,得x=m.故当x∈(-∞,m)时,ex-m<1,f′(x)<0,f(x)单调递减;当x∈(m,+∞)时,ex-m>1,f′(x)>0,f(x)单调递增;故当x=m时,f(m)为极小值,也是最小值.令f(m)=1-m≥0,得m≤1,即对任意x∈R,f(x)≥0恒成立时,m的取值范围是(-∞,1].(2)由(1)知f(x)在[0,2m]上至多有两个零点,当m>1时,f(m)=1-m<0,∵f(0)=e-m>0,f(0)·f(m)<0,∴f(x)在(0,m)上有一个零点.又f(2m)=em-2m,令g(m)=em-2m,∵当m>1时,g′(m)=em-2>0,∴g(m)在(1,+∞)上单调递增.∴g(m)>g(1)=e-2>0,即f(2m)>0.∴f(m)·f(2m)<0,∴f(x)在(m,2m)上有一个零点.故f(x)在[0,2m]上有两个零点.1.已知函数y=f(x)是定义在R上的奇函数,且当x<0时,不等式f(x)+xf′(x)<0成立,若a=30.3f(30.3),b=(logπ3)f(logπ3),c=f,则a,b,c间的大小关系是(  )A.a>b>cB.c>b>aC.c>a>bD.a>c>b解析:设g(x)=xf(x),则g′(x)=f(x)+xf′(x)<0(x<0),∴当x<0时,g(x)=xf(x)为减函数.又g(x)为偶函数,∴当x>0时,g(x)为增函数.∵1<30.3<2,0<logπ3<1,log3=-2,6\n∴g(-2)>g(30.3)>g(logπ3),即c>a>b.答案:C2.设1<x<2,则,2,的大小关系是(  )A.2<<B.<2<C.2<<D.<2<解析:令f(x)=x-lnx(1<x<2),则f′(x)=1-=>0,∴函数y=f(x)在(1,2)内为增函数.∴f(x)>f(1)=1>0,∴x>lnx>0⇒0<<1.∴2<.又-==>0,∴2<<,选A.答案:A3.若函数f(x)=x3+x2-ax在区间(1,+∞)上单调递增,且在区间(1,2)上有零点,则实数a的取值范围是________.解析:由f(x)在区间(1,+∞)上单调递增,可知f′(x)=x2+2x-a在(1,+∞)上恒大于等于0,又因函数f′(x)在(1,+∞)上单调递增,所以只需f′(1)=1+2-a≥0,即a≤3,又f(x)在区间(1,2)上有零点,所以f(1)f(2)<0,即<a<,综上<a≤3.答案:(,3]4.(2014·福建卷)已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex.解:(1)由f(x)=ex-ax,得f′(x)=ex-a.又f′(0)=1-a=-1,得a=2.6\n所以f(x)=ex-2x,f′(x)=ex-2.令f′(x)=0,得x=ln2.当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=eln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=ex-x2,则g′(x)=ex-2x.由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增,又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<ex.(3)①若c≥1,则ex≤cex.又由(2)知,当x>0时,x2<ex.所以当x>0时,x2<cex.取x0=0,当x∈(x0,+∞)时,恒有x2<cex.②若0<c<1,令k=>1,要使不等式x2<cex成立,只要ex>kx2成立.而要使ex>kx2成立,则只要x>ln(kx2),只要x>2lnx+lnk成立.令h(x)=x-2lnx-lnk,则h′(x)=1-=,所以当x>2时,h′(x)>0,h(x)在(2,+∞)内单调递增.取x0=16k>16,所以h(x)在(x0,+∞)内单调递增,又h(x0)=16k-2ln(16k)-lnk=8(k-ln2)+3(k-lnk)+5k,易知k>lnk,k>ln2,5k>0,所以h(x0)>0.即存在x0=,当x∈(x0,+∞)时,恒有x2<cex.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 17:48:22 页数:6
价格:¥3 大小:83.50 KB
文章作者:U-336598

推荐特供

MORE