首页

【高考总动员】2023高考数学大一轮复习 第2节 参数方程课时提升练 新人教版选修4-4

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

课时提升练(六十一) 参数方程一、选择题1.当参数θ变化时,动点P(2cosθ,3sinθ)的轨迹必过点(  )A.(2,0)    B.(2,3)C.(1,3)D.【解析】 由题意可知,动点P的轨迹方程为+=1,结合四个选项可知A正确.【答案】 A2.直线l:(t为参数)的倾斜角为(  )A.20°   B.70°C.160°   D.120°【解析】 法一:将直线l:(t为参数)化为参数方程的标准形式为(t为参数),故直线的倾斜角为70°.法二:将直线l:(t为参数)化为直角坐标方程为y-5=(x+2),即y-5=(x+2),∴y-5=tan70°(x+2),∴直线的倾斜角为70°.【答案】 B3.(2014·北京高考)曲线(θ为参数)的对称中心(  )A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1上D.在直线y=x+1上【解析】 消去参数θ,将参数方程化为普通方程.曲线可化为(x+1)2+(y-2)2=1,其对称中心为圆心(-1,2),该点在直线y=-2x上,故选B.【答案】 B4.已知在平面直角坐标系xOy中,点P(x,y)是椭圆+=1上的一个动点,则S=x+y的取值范围为(  )A.[,5]B.[-,5]C.[-5,-]D.[-,]【解析】 因椭圆+=1的参数方程为(φ为参数),故可设动点P4\n的坐标为(cosφ,sinφ),其中0≤φ<2π,因此S=x+y=cosφ+sinφ==sin(φ+γ),其中tanγ=,所以S的取值范围是[-,],故选D.【答案】 D5.(2014·安徽高考)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为(  )A.B.2C.D.2【解析】 将参数方程和极坐标方程化为直角坐标方程求解.直线l的参数方程(t为参数)化为直角坐标方程是y=x-4,圆C的极坐标方程ρ=4cosθ化为直角坐标方程是x2+y2-4x=0.圆C的圆心(2,0)到直线x-y-4=0的距离为d==.又圆C的半径r=2,因此直线l被圆C截得的弦长为2=2.故选D.【答案】 D6.已知圆C的参数方程为(α为参数),当圆心C到直线kx+y+4=0的距离最大时,k的值为(  )A.   B.C.-   D.-【解析】 圆C的直角坐标方程为(x+1)2+(y-1)2=1,∴圆心C(-1,1),又直线kx+y+4=0过定点A(0,-4),故当CA与直线kx+y+4=0垂直时,圆心C到直线距离最大,∵kCA=-5,∴-k=,∴k=-.【答案】 D二、填空题7.(2014·咸阳模拟)已知直线l1:(t为参数)与圆C2:(θ为参数)的位置关系不可能是________.【解析】 把直线l1的方程:(t为参数)化为直角坐标方程为xtanα-y-tanα=0,把圆C2的方程:(θ为参数)化为直角坐标方程为x2+y24\n=1,圆心到直线的距离d==≤1=r,所以直线与圆相交或相切,故填相离.【答案】 相离8.(2013·陕西高考)圆锥曲线(t为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y2=4x,表示开口向右,焦点在x轴正半轴上的抛物线,由2p=4⇒p=2,则焦点坐标为(1,0).【答案】 (1,0)9.(2014·湖南高考)在平面直角坐标系中,倾斜角为的直线l与曲线C:(α为参数)交于A,B两点,且|AB|=2.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是________.【解析】 曲线(α为参数),消去参数得(x-2)2+(y-1)2=1.由于|AB|=2,因此|AB|为圆的直径,故直线过圆的圆心(2,1),所以直线l的方程为y-1=x-2,即x-y-1=0,化为极坐标方程为ρcosθ-ρsinθ=1,即ρ(cosθ-sinθ)=1.【答案】 ρ(cosθ-sinθ)=1三、解答题10.(2014·江苏高考)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.【解】 将直线l的参数方程代入抛物线方程y2=4x,得2=4,解得t1=0,t2=-8.所以AB=|t1-t2|=8.11.(2014·长春模拟)长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,=3,点P的轨迹为曲线C.(1)以直线AB的倾斜角α为参数,求曲线C的参数方程;(2)求点P到点D(0,-2)距离的最大值.【解】 (1)设P(x,y),由题设可知,则x=|AB|cos(π-α)=-2cosα,y=|AB|sin(π-α)=sinα,4\n所以曲线C的参数方程为(α为参数,<α<π).(2)由(1)得|PD|2=(-2cosα)2+(sinα+2)2=4cos2α+sin2α+4sinα+4=-3sin2α+4sinα+8=-32+.当sinα=时,|PD|取得最大值.12.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.【解】 (1)C的普通方程为(x-1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cost,sint),由(1)知C是以G(1,0)为圆心,1为半径的上半圆.因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同,tant=,t=.故D的直角坐标为,即.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 17:50:09 页数:4
价格:¥3 大小:49.00 KB
文章作者:U-336598

推荐特供

MORE