首页

初三数学期中检测题及答案解析

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

期中检测题本检测题满分:120分,时间:120分钟一、选择题(每小题3分,共36分)1.已知二次函数y=a(x+1)2b(a≠0)有最小值1,则a、b的大小关系为()A.a>bB.a<bC.a=bD.不能确定2.已知二次函数的图象如图所示,则下列结论正确的是( )A.B.C.D.3.(河南中考)在平面直角坐标系中,将抛物线y=x24先向右平移2个单位,再向上平移2个单位,得到的抛物线的表达式是()A.y=(x+2)2+2B.y=(x2)22C.y=(x2)2+2D.y=(x+2)224.一次函数与二次函数在同一平面直角坐标系中的图象可能是()5.已知抛物线的顶点坐标是,则和的值分别是()A.2,4B.C.2,D.,06.若是关于的一元二次方程,则的值应为()A.B.C.D.无法确定7.方程的解是() A.B.C.D.8.若是关于的方程的根,则的值为()A.B.C.D.x§k§b19.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.B.C.D.10.下列标志既是轴对称图形又是中心对称图形的是()ABCD11.已知点的坐标为,为坐标原点,连接,将线段绕点按逆时针方向旋转90°得线段,则点的坐标为()A.B.C.D.12.当代数式的值为7时,代数式的值为()二、填空题(每小题3分,共24分)13.对于二次函数,已知当由1增加到2时,函数值减少3,则常数的值是.14.将抛物线向右平移2个单位后,再向下平移5个单位,所得抛物线的顶点坐标为_______.15.(湖北襄阳中考)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y=60x1.5x2,该型号飞机着陆后需滑行m才能停下来.16.如果,那么的关系是________.17.如果关于的方程没有实数根,那么的取值范围为_____________.18.方程的解是__________________.19.如图所示,边长为2的正方形的对角线相交于点,过点的直线分别交 于点,则阴影部分的面积是.第24题图第19题图AEDCFOB20.若(是关于的一元二次方程,则的值是________.三、解答题(共60分)21.(8分)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?22.(8分)(2012·杭州中考)当k分别取1,1,2时,函数y=(k1)x24x+5k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.23.(8分)把抛物线向左平移2个单位,同时向下平移1个单位后,恰好与抛物线重合.请求出的值,并画出函数的示意图.24.(8分)在长为,宽为的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.25.(8分)已知抛物线与轴有两个不同的交点.(1)求的取值范围;(2)抛物线与轴的两交点间的距离为2,求的值. 26.(8分)若关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)是否存在实数k使得x1•x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.27.(12分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF.(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.[来源:学&科&网Z&X&X&K] 期中检测题参考答案1.A解析:∵二次函数y=a(x+1)2b(a≠0)有最小值1,∴a>0且x=1时,b=1.∴a>0,b=1.∴a>b.2.C解析:由函数图象可知,所以.3.B解析:根据平移规律“左加右减”“上加下减”,将抛物线y=x2-4先向右平移2个单位得y=(x-2)2-4,再向上平移2个单位得y=(x-2)2-4+2=(x-2)2-2.4.C解析:当时,二次函数图象开口向下,一次函数图象经过第二、四象限,此时C,D符合.又由二次函数图象的对称轴在轴左侧,所以,即,只有C符合.同理可讨论当时的情况.5.B解析:抛物线的顶点坐标是(),,,解得.6.C解析:由题意,得,解得.故选C.7.A解析:∵,∴,∴.故选A.8.D解析:将代入方程得,所以.∵,∴,∴.故选D.9.A解析:依题意,得联立得,∴,∴.故选.10.A解析:选项B是轴对称图形但不是中心对称图形,选项C是中心对称图形但不是轴对称图形,选项D既不是轴对称图形又不是中心对称图形.11.C解析:画图可得点的坐标为.12.A解析:当时,,当x=20时,y最大值=600,则该型号飞机着陆时需滑行600m才能停下来. 16.解析:原方程可化为,∴.17.解析:∵=,∴.18.解析:.方程有两个不等的实数根即19.1解析:△绕点旋转180°后与△,所以阴影部分的面积等于正方形面积的,即1.20解析:由得或.21.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+(1+x)x=64,即解得=7,=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又有448人被传染.22.分析:先求出当k分别取1,1,2时对应的函数,再根据函数的性质讨论最大值.解:(1)当k=1时,函数y=4x+4为一次函数,无最值.(2)当k=2时,函数y=x24x+3为开口向上的二次函数,无最大值.(3)当k=1时,函数y=2x24x+6=(x+1)2+8为开口向下的二次函数,对称轴为直线x=1,顶点坐标为(,8),所以当x=1时,y最大值=8.综上所述,只有当k=1时,函数y=(1)x24x+5k有最大值,且最大值为8.点拨:本题考查一次函数和二次函数的基本性质,熟知函数的性质是求最值的关键. 23.解:将整理得.因为抛物线向左平移2个单位,再向下平移1个单位得,所以将向右平移2个单位,再向上平移1个单位即得,故,所以.示意图如图所示.24.解:设所截去小正方形的边长为.由题意得,.解得.经检验,符合题意,不符合题意,舍去.∴.答:所截去小正方形的边长为.25.解:(1)∵抛物线与轴有两个不同的交点,∴>0,即解得c<.(2)设抛物线与轴的两交点的横坐标为,∵两交点间的距离为2,∴.由题意,得,解得,∴,.26.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式Δ≥0,据此列出关于k的不等式[-(2k+1)]2-4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得x1•x2--≥0成立,利用根与系数的关系可以求得x1+x2=2k+1,x1•x2=k2+2k,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式3x1•x2-(x1+x2)2≥0,通过解不等式可以求得k的值.解:(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,∴4k2+4k+1-4k2-8k≥0,∴1-4k≥0,∴k≤. ∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得x1•x2--≥0成立.∵x1,x2是原方程的两根,∴x1+x2=2k+1,x1•x2=k2+2k.由x1•x2--≥0,得3x1•x2-(x1+x2)2≥0.∴3(k2+2k)-(2k+1)2≥0,整理得-(k-1)2≥0,∴只有当k=1时,上式才能成立.又由(1)知k≤,∴不存在实数k使得x1•x2--≥0成立.27.(1)证明:在△和△中,∠,,∠,∴△≌△.(2)解:当∠时,.理由如下:∵∠,∴∠.∴∠,∴∠.∵∠,∴∠,∴.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-01-06 10:02:09 页数:8
价格:¥5 大小:2.99 MB
文章作者:心灵地图

推荐特供

MORE