首页

2022中考数学二轮专题复习 专题02 图表信息问题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

专题二图表信息问题1.(2022·广东肇庆)某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是(  )A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人D.甲地区的人数比丙地区的人数少180人解析 由已知得,扇形甲的圆心角是×360°=72°,A选项正确;学生的总人数是180÷=900,B选项正确;乙地区的人数900×=270,丙地区的人数是900×=450,所以C选项正确,故选D.答案 D2.(2022·浙江绍兴)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:成绩(分)456789甲组(人)125214乙组(人)114522(1)请你根据上述统计数据,把下面的图和表补充完整;7\n一分钟投篮成绩统计分析表:统计量平均分方差中位数合格率优秀率甲组2.56680.0%26.7%乙组6.81.7686.7%13.3%(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.分析 (1)直接根据测试成绩表补全统计图;根据平均数公式计算出甲组平均分和根据中位数的概念求出中位数,即可补全分析表.(2)根据平均分、方差、中位数、合格率的意义即可写出支持小聪的观点的理由.解 (1)根据测试成绩表,补全统计图如图:7\n∵甲组平均分(4×1+5×2+6×5+7×2+8×1+9×4)÷15=6.8,乙组中位数是第8个数,是7.∴补全分析表:统计量平均分方差中位数合格率优秀率甲组6.82.56680.0%26.7%乙组6.81.76786.7%13.3%(2)理由1:甲乙两组平均数一样,乙组的方差低于甲组,说明乙组成绩比甲组稳定,所以乙组成绩好于甲组.理由2:乙组成绩的合格率高于甲组成绩的合格率,所以乙组成绩好于甲组.3.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是(  )A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定解析 此题主要结合折线统计图,利用极差、中位数、平均数以及方差来进行分析数据,找到解决问题的突破口.利用数据逐一分析解答即可.A.由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,此选项正确;B.7\n由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项正确;C.由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项正确;D.由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,所以此选项错误.答案 D4.如图,阅读对话,解答问题.(1)试用树形图或列表法写出满足关于x的方程x2+px+q=0的所有等可能结果;(2)求(1)中方程有实数根的概率.分析 本题结合一元二次方程的解的问题考查概率问题;用到的知识点为:概率=所求情况数与总情况数之比.一元二次方程有解,根的判别式为非负数.(1)分2步实验列举出所有情况即可;(2)看Δ≥0的情况数占总情况数的多少即可.解 (1)等可能结果为:①x2+2x+1=0;②x2+2x-1=0;③x2+x+2=0;7\n④x2+x-1=0;⑤x2-x+2=0,⑥x2-x+1=0;(2)共6种情况,其中①②④3个方程有解,所以概率为.5.商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p(元/千克)与销售月份x的关系如图所示:②销售收入q(元/千克)与销售月份x满足q=-x+15;③销售量m(千克)与销售月份x满足m=100x+200;试解决以下问题:(1)根据图形,求p与x之间的函数关系式;(2)求该种商品每月的销售利润y(元)与销售月份x的函数关系式,并求出哪个月的销售利润最大?分析 (1)根据点(1,9),(6,4)在一次函数p=kx+b的图象上,点的坐标满足方程的关系,将(1,9),(6,4)代入p=kx+b即可求出k,b,从而求得一次函数的解析式.(2)根据“销售利润=(单位销售收入-单位销售成本)×销售量”这一等量关系列出该种商品每月的销售利润y(元)与销售月份x的函数关系式.然后利用二次函数最大值求法,求出哪个月的销售利润最大.解 (1)根据图形,知p与x之间的函数关系是一次函数关系,故设为p=kx+b,并有7\n故p与x之间的函数关系式为p=-x+10.(2)依题意,月销售利润y=(q-p)m=(100x+200),化简,得y=-50x2+400x+1000=-50(x-4)2+1800,所以4月份的销售利润最大.6.我市某工艺厂为配合奥运会,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)……30405060……每天销售量y(件)……500400300200……(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?分析 (1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.(2)利用二次函数的知识求最大值.7\n解 (1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,解得∴函数关系式是:y=-10x+800.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.7

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:31:58 页数:7
价格:¥3 大小:637.97 KB
文章作者:U-336598

推荐特供

MORE