首页

2022中考数学第二轮专题复习图表信息型问题和阅读理解型问题 新人教版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

2022中考数学冲刺第二轮专题复习——图表信息型问题和阅读理解型问题一、图表信息型问题1、图表信息型问题的特点:由图象(表)来获取信息.从而达到解题目的的题型。2、图表信息型问题的主要类型:(1)图像信息型,即教材介绍的基本函数图象(如直线、双曲线、抛物线);(2)图形信息型,主要是几何问题;(3)统计图表型,即结合实际情境描绘的不规则图象(如折线型、统计图表等).这种题型一般是由图象给出的数据信息,探求两个变量之间的关系,进行数、形之间的互换.题型可涉及填空、选择和解答。3、图表信息型考我们什么?(1)注重考查数形之间的转化能力,(2)考察发现问题、解决问题的能力4、解答图表信息型问题的步骤:(1)观察图像,获取有效信息;(2)对获取的信息进行整理,理清各量之间的关系;(3)通过建模解决问题。第一种类型:图像信息型,即教材介绍的基本函数图象(如直线、双曲线、抛物线)【例1】(2022绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是(只需填序号).6\n第二种类型:图形信息型,主要是几何问题【例2】(2022绍兴)取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为.【例3】(2022绍兴)如图为某机械装置的截面图,相切的两圆⊙O1,⊙O2均与⊙O的弧AB相切,且O1O2∥l1(l1为水平线),⊙O1,⊙O2的半径均为30mm,弧AB的最低点到l1的距离为30mm,公切线l2与l1间的距离为100mm.则⊙O的半径为(  )A.70mmB.80mmC.85mmD.100mm【例4】(2022贵阳)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②③中的一种)设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不诱钢材料总长度为12米,当x为多少时,矩形架ABCD的面积S最大?最大面积是多少?(3)在图③6\n中,如果不锈钢材料总长度为a米,共有n条竖档,那么当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?第三种类型:统计图表型,即结合实际情境描绘的不规则图象(如折线型、统计图表等)【例5】(2022衢州)下列材料来自2022年5月衢州有关媒体的真实报道:有关部门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下:写出2022年民众安全感满意度的众数选项是;该统计图存在一个明显的错误是.【例6】(2022湖州)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)请根据图1,回答下列问题:①这个班共有名学生,发言次数是5次的男生有人、女生有人;②男、女生发言次数的中位数分别是次和次;(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示,求第二天发言次数增加3次的学生人数和全班增加的发言总次数.6\n二、阅读理解型问题1、阅读理解型的主要题型:(1)阅读特殊范例,推出一般结论;(2)阅读解题过程,总结解题思路和方法;(3)阅读新知识,研究新问题等。2、阅读理解型问题的特点:阅读篇幅较长,有时会跟其他学科有关联,集阅读理解、应用于一体。3、新定义型是阅读理解型问题的一种,每年必考,与高中知识有关的拓展类阅读是一种命题趋势。【例7】(2022•北京)阅读材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按方式在矩形内运动:它从A点出发,沿着AB边夹角为45°方向作直线运动,每次碰到矩形一边,就会改变运动方向,沿着与这条边夹角为45°方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45°方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°方向作直线运动,…,如图1所示,问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过路径总长是多少.小贝的思考是这样开始:如图2,将矩形ABCD沿直线CD折叠,得到矩形,由轴对称知识,发现.请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰次;P点从A点出发到第一次与D点重合时所经过路径总长是cm;(2)近一步探究:改变矩形ABCD中AD、AB长,且满足AD>AB,动点P从A点出发,按照阅读材料中动点运动方式,并满足前后连续两次与边相碰位置在矩形ABCD相邻两边上.若P点第一次与B点重合前与边相碰7次,则AB:AD值为.6\n【例8】请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示).【例9】小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则B1C=x+0.7,A1C=AC-AA1=-0.4=2而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=得方程(x+0.7)2+22=2.52,解方程得x1=0.8,x2=-2.2(舍去),∴点B将向外移动米.(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.6\n练习1、先阅读下列材料,再解答后面的问题材料:23=8,此时,3叫做以2为底8的对数,记为.一般地,若,则n叫做以为底b的对数,记为,则4叫做以3为底81的对数,记为.问题:(1)计算以下各对数的值:.(2)观察(1)中三数4、16、64之间满足怎样的关系式?之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?根据幂的运算法则:以及对数的含义证明上述结论.2、阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,BE,CF.(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:31:43 页数:6
价格:¥3 大小:182.78 KB
文章作者:U-336598

推荐特供

MORE