山东省济宁市2022年中考数学专项复习 专题三 纠错必备
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
专题三纠错必备内容目录:一、数与式二、方程(组)与不等式(组)三、函数四、三角形五、四边形六、圆七、图形的相似八、视图与投影九、图形变换十、统计与概率考点一数与式【易错分析】易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆.易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.易错点3:平方根与算术平方根的区别,立方根的意义.易错点4:求分式值为零时学生易忽略分母不能为零.易错点5:分式运算时要注意运算法则和符号的变化.【好题闯关】好题1.下列各数中,是无理数的是()A.B.C.0.3D.解析:考查了无理数的定义.无限不循环小数称之为无理数.部分学生认为凡是带根号的数均为无理数从而误选B选项.答案:D好题2:计算:(-1)2022+3(tan60°)-1-︱1-︱+(3.14-p)0.解析:实数运算的要点是掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关.答案:解:原式=-1+3()-1-(-1)+1=-1+3÷-+1+1=1好题3:的算术平方根是()A.-9B.3C.±3D.±9wWw.xKb1.coM解析:考查平方根与算术平方根的区别,正数a的平方根为±,是正负两个值,而算术平方根是两个值中的正值,即算术平方根是一个非负数.16\n答案:B好题4:分式值为零的条件是()A.x≠-1B.x=1C.x=-1D.x=±1解析:如果分式的值为零,那么.由得x=1.学生易忽略分母不能为零的条件而错选D.答案:B好题5:先化简,再求值:,其中x=tan60°.解析:本题考查了因式分解的方法和分式的四则运算,严格按照法则和方法进行运算是解题的关键,所以在初学时一定要熟练掌握方法和法则,区分清楚易混点.另外要细心,注意符号的确定,不要随意的变动正负号.答案:原式=====.当时,原式=.考点二方程(组)与不等式(组)【易错分析】易错点1:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,不考虑除数易导致选项出错.易错点2:运用不等式的性质3时,容易忘记变号导致结果出错.易错点3:关于一元二次方程的取值范围的题目易忽视二次项系数导致出错.易错点4:关于一元一次不等式组有解无解的条件易忽视相等的情况.易错点5:解分式方程时易忘记检验,导致运算结果出错.易错点6:关于换元法及整体代入的题目易忽视整体的非负性或整体是否有解导致结论出错.【考点闯关】好题1.已知mx=my,下列结论错误的是()A.x=yB.a+mx=a+myC.mx-y=my-yD.解析:考查了等式性质的应用,题中A的变形是在已知等式两边同时除以m,而m是否为零不明确,所以A的结论是错误的.答案:A好题2.解方程()2=3()解析:此题若两边同除以(),得:x+3=3,∴x=0,这时就漏解()=0,答案:移项,得:()2-3()=0()(-3)=0()x=0∴x=-3或016\n好题3.若,则下列各式中一定成立的是()A. B. C. D.解析:考查了不等式的性质,特别要注意运用不等式的性质3时,不等式两边同乘以或除以一个负数,不等号的方向要改变.答案:A好题4.已知关于x的二次方程(1-2K)x2-2有实数根,则K的取值范围是解析:此题有两处易错,一是:忽视二次项系数1-2K≠0,二是:有实数根是≥0,而不是>0.答案:好题5.如果一元一次不等式组的解集为.则的取值范围是:()A.B.C.D.解析:利用同大取大可以得到a<3易忽视a=3时解集也为这种情况,导致错选D答案:C好题6.若不等式组有解,则a的取值范围是()A.a>-1.B.a≥-1.C.a≤1.D.a<1.解析:同上题一样,学生在考虑有解无解题目时,弄不清什么时候该带等号什么时候不该带等号导致出错.答案:A好题7.已知关于的不等式组只有四个整数解,则实数的取值范围是.解析:学生考虑本题往往只考虑整数,不考虑区间值,相当然认为导致出错.答案:好题8.解方程解析:解分式方程时易忘记检验,导致结论出错.答案:两边同时乘以(4-x2)并整理得8=2(2+x),解之得x=2经检验x=2是增根,原方程无解.好题9.已知,则的值等于解析:学生解题时易直接换元令,解得然后直接填16\n答案,易忽视不能为负数这个隐含条件.答案:4考点三函数【易错分析】易错点1:函数自变量的取值范围考虑不周全.易错点2:一次函数图象性质与k、b之间的关系掌握不到位.易错点3:在反比例函数图象上求三角形面积,面积不变成惯性.易错点4:二次函数的顶点坐标的表示.易错点5:二次函数实际应用时,y取得最值时,自变量x不在其范围内.【好题闯关】好题1.函数y=+中自变量x的取值范围是()A.x≤2B.x=3C.x<2且x≠3D.x≤2且x≠3解析:此题我们都能注意到2-x≥0,且x-3≠0,∴误选D,其实x≤2里已包含x≠3.答案:A好题2.已知函数的图象如图,则的图象可能是()解析:此题不仅要看k、b所决定的象限,还要看k变化大小与直线的倾斜程度,难度大,所以更易出错.首先排除D答案,b大小不变,排除B答案,2K>K,所以直线与x轴交点的横坐标变大.xyOAB答案:C好题3.如图,在直角坐标系中,点是轴正半轴上的一个定点,点是双曲线()上的一个动点,当点的横坐标逐渐增大时,的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小解析:反比例函数图象上点的横、纵坐标的乘积为定值K,所以很易选B,此题底OA长度不变,但高(过B点作OA的高)逐渐减小,所以面积也逐渐减小.答案:C好题4.抛物线的顶点坐标是()A.(m,n)B.(-m,n)C.(m,-n)D.(-m,-n)解析:二次函数的顶点坐标是(h,k)∴可能误选A答案.答案:B16\n好题5.小强从如图所示的二次函数的图象中,观察得出了下面五条信息:(1);(2);(3);(4);(5).你认为其中正确信息的个数有A.2个B.3个C.4个D.5个解析:二次函数,a决定开口方向,a、b决定对称轴,c决定图象与Y轴交点.判断(4)、(5)时,令x=1或-1,再结合图象分析.答案:C好题6.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解析:此题属于二次函数实际应用题,(2)问中自变量X一定要是整数.答案:(1)(且为整数);(2).,当时,有最大值2402.5.,且为整数,当时,,(元),当时,,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当时,,解得:.当时,,当时,.当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点四三角形【易错分析】易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别.易错点2:三角形三边之间的不等关系,注意其中的“任何两边”.易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”.16\n易错点4:全等形,全等三角形及其性质,三角形全等判定.着重学会论证三角形全等,线段的倍分这些问题.易错点5:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入.易错点6:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题.易错点7:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用.【好题闯关】好题1.如图,△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD等于()A.100°B.120°C.130°D.150°解析:本题考查三角形外角的性质,三角形的一个外角等于和它不相邻的两个内角的和.学生易疏忽性质中的“不相邻”这三个字.答案:C好题2.如图,为估计池塘岸边、两点的距离,小方在池塘的一侧选取一点,测得米,米,、间的距离不可能是()A.5米B.10米C.15米D.20米解析:本例考查三角形三边之间的不等关系,三角形的任何两边之和大于第三边,任何两边之差小于第三边.学生易忽视概念里的“任何”两字.答案:A好题3.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是()A.75°B.120°C.30°D.30°或120°解析:等腰三角形的内角有顶角和底角之分,而已知一个内角是30°,并未说明是顶角还是底角,因此,本题很容易漏解.答案:D好题4.如图,在△ABC和△ADE中,有以下四个论断:①AB=AD,②AC=AE,③∠C=∠E,④BC=DE,请以其中三个论断为条件,余下一个论断为结论,写出一个真命题(用序号“JJJðJ”的形式写出):解析:本例是一个开放型问题,学生可以从①②③④中任选3个作为条件,而余下一个为结论,但构成的命题必须是真命题.所以,我们应根据三角形全等的判定方法去组合.这里,要注意“SSA”的错误做法.答案:①②④ð③,或②③④ð①好题5.已知的三边长分别为5,13,12,则的面积为()A.30B.60C.78D.不能确定解析:仔细观察三角形的三边就会发现:52+122=132,利用勾股定理的逆定理可以判断这个三角形是直角三角形,而且两直角边是5和12,根据面积公式即可得出结果.答案:A好题6.有一块直角三角形的绿地,量得两直角边长分别为现在要将绿地扩充成等腰三角形,且扩充部分是以为直角边的直角三角形,求扩充后等腰三角形绿地的周长.解析:此例主要考点是直角三角形、勾股定理、等腰三角形,涉及到分类讨论的数学思想.思考分析时我们需注意两点:“等边对等角”适用的条件是在同一个三角形中,在不同三角形中不能用;等腰三角形“三线合一”指的是底边上的高、底边上的中线、顶角的平分线互相重合,对于腰上的高、腰上的中线,底角的平分线则不成立.16\n答案:在中,,由勾股定理有:.扩充部分为扩充成等腰应分以下三种情况:①如图1,当时,可求,得的周长为32m.②如图2,当时,可求,由勾股定理得:,得的周长为③如图3,当为底时,设则由勾股定理得:,得的周长为ADCBADBCADBC图1图2图3考点五四边形【易错分析】易错点1:平行四边形的性质和判定,如何灵活、恰当地应用.易错点2:平行四边形的概念和面积的求法,注意与三角形面积求法的区分.易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分.易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透.易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算.易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的一些性质.【考题创关】好题1.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.B.C.D.解析:本例考查平行四边形的判定,结合已知条件去寻找判断四边形ABCD是平行四边形所需条件——一组对边平行且相等.由于平行四边形的判定方法较多,学生不易很快找到解决方案.答案:D好题2.如图,□ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()ADCBA.3B.6C.12D.2416\n解析:本题主要利用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分.另外平行四边形的面积求法也是本题的一个重点.答案:CCDABE好题3.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A.B.C.D.解析:本例是一个矩形的折叠问题,关键在于把握折叠前后的等量关系.答案:Ca"好题4.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角a的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°解析:此题主要考查菱形的性质与判定,通过对长方形两次对折→裁剪→展开,从中可以看出由此得到的菱形要有一个锐角为60°,这与如图所示的图形有何关系呢?相信学生可以去体验一下便会豁然开朗的.XkB1.com答案:D好题5.如图所示,正方形的面积为12,是等边三角形,点在正方形ADEPBC内,在对角线上有一点,使的和最小,则这个最小值为()A.B.C.3D.解析:这是一个典型的利用轴对称性质求最值的问题,解题时我们首先看到正方形中B和D关于AC成轴对称,于是的和最小值为BE,然后根据正方形面积与是等边三角形即可得出这个最小值.答案:A好题6.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图;(2)求的值.③④①②①③②④xyxyyxxy解析:本例主要应用了正方形、矩形的性质,解一元二次方程、分式的基本性质等.其实本例的求解并不很难,我们应该思考的是本例中的①②③④四块图形到底可以拼成多少种16\n矩形(非正方形).答案:(1)如图所示(2)由拼图前后的面积相等得:因为y≠0,整理得:解得:(负值不合题意,舍去)考点六圆【易错分析】易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况.易错点2:对垂径定理的理解不够,不会正确添加辅助线运用勾股定理进行解题.易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题.易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况.易错点5:圆锥的侧面积与全面积,高与母线考试时易混淆.【好题闯关】好题1.⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()A.30°B.60°C.30°或150°D.60°或120°解析:考查了圆周角与弦的关系,同弦所对的圆周角有两种情况,部分同学考虑不全面导致选B而出错.答案:D好题2.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A.5米B.8米C.7米D.5米解析:考查了垂径定理的内容,学生不会做辅助线导致出错.答案:BCBDAO好题3.如图,是⊙O的直径,点在的延长线上,切⊙O于若则等于()A. B. C.D.解析:考查了切线的性质以及圆周角与圆心角的关系,部分同学理解不够深刻导致出错.答案:A好题4.若与相切,且,的半径,则的半径是()A.3B.5C.7D.3或716\n解析:对概念理解不清楚而致错.圆与圆的位置关系中,相切有外切和内切两种情况,想当然地把圆与圆相切仅仅理解为外切一种情况而出错.答案:D好题5.半径为13cm和15cm的两圆相交,公共弦长为24cm,则两圆的圆心距为.解析:考查圆与圆的位置关系,相交时有圆心在公共弦同侧和圆心在公共弦两侧的情况,部分同学理解为圆心一定是公共弦两侧导致做出一个答案.答案:4cm或14cm好题6.如图已知扇形的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A.B.C.D.解析:考查了圆锥的侧面展开图及扇形面积的计算方法,部分学生立体感不强,不理解两者之间的内在联系导致出错.答案:D好题7.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积()A. B.C.D.解析:考查了圆锥侧面积的计算方法,学生解题时易混淆高与母线导致出错.答案:C考点七图形的相似【易错分析】易错点1:相似三角形的性质,面积比、周长比与相似比的关系容易混淆.易错点2:相似三角形的判定方法,寻找不到足够的条件证明两三角形相似.易错点3:相似与锐角三角函数相结合的题目,两者的联系不明确,找不到解题思路,比例线段容易找错.易错点4:坡度的概念不清,不知道是哪两条线段的比值.易错点5:解直角三角形的题目,不管是否直角三角形都直接套用锐角三角函数去求.CABADAOAEAFA【好题闯关】好题1.如图,△DEF是由△ABC经过位似变换得到的,点O16\n是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A.B.C.D.解析:考查了相似图形的性质,面积比等于相似比的平方,部分同学记不住导致选A答案:B好题2.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A.解析:考查了相似三角形的判定,部分学生对单纯图形的判断凭感觉不知运用勾股定理求解导致出错答案:A好题3.如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,于,且则的长为()A.2B.C.D.解析:考查了相似三角形的性质以及特殊角的三角函数值,学生做题时找不准对应线段容易导致出错.答案:B好题4.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5mB.6mC.7mD.8m解析:考查了坡度的概念,坡度i=h:l,学生做题时易将坡度记成对边与斜边的比值导致出错.答案:A好题5.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)16\nCDBA北60°30°解析:考查了解直角三角形的知识,部分学生对三角函数知识理解不透,不看图形是否是直角三角形就直接套用三角函数,导致出错.答案:解:由题意得∠CAB=30°,∠CBD=60°∴∠BCA=∠CAB,∴BC=AB=20×2=40∵∠CBD=90°∴∴CD=BC×(海里)∴此时轮船与灯塔C的距离为海里.考点八视图与投影【易错分析】易错点1:根据物体(几何体)确定三种视图.根据三种视图确定物体(几何体)的形状.易错点2:正投影概念的理解不准确.不能分清投影与视图的区别与联系.【好题闯关】好题1.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是()解析:画三种视图首先要从实物中抽象出几何体,其次要掌握基本几何体的三种视图.答案:C好题2:如图,箭头表示投影线的方向,则图中圆柱体的正投影是()A.圆 B.圆柱C.梯形 D.矩形解析:16\n当物体的某个平面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.物体正投影的形状、大小与它相对于投影面的位置有关.答案:D好题3:如图,一个空间几何体的主视图和左视图都是边长为1的三角形,俯视图是一个圆,那么这个几何体的侧面积是()A.B.C.D.解析:根据三视图确定几何体的形状,关键是“读图”,同时对常见几何体的三视图也要熟悉.本题首先要将三视图还原为主体图形(圆锥),再计算圆锥展开图的扇形的面积.答案:D考点九图形变换【易错分析】易错点1:轴对称、轴对称图形,及中心对称、中心图形概念把握不准.易错点2:对平移概念及性质把握不准.易错点3:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变.易错点4:将轴对称与全等混淆,关于直线对称与关于轴对称混淆.【好题闯关】好题1:如图1,判断△ABC与△A/B/C的关系.解析:本题容易出现错解:△ABC和△A/B/C对称.错解分析:说两个图形对称,必须说它们关于哪条直线对称.在图1中,△ABC和△A/B/C关于直线l2不对称.实质上,全等只是从图形的形状相同、大小相等两个方面揭示了两个图形的关系,而轴对称是从形状相同、大小相等、位置成轴对称三个方面揭示了两个图形的关系.答案:△ABC和△A/B/C关于直线l1对称.好题2.在等边三角形、平行四边形、等腰梯形、角、扇形中不是轴对称图形的有()个.A.1B.2C.3D.4解析:等边三角形和等腰梯形是轴对称图形,不是中心对称图形;平行四边形是中心对称图形,不是轴对称图形;五角星虽是旋转对称,但不是中心对称.答案:A好题3:如图,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE是由AB平移所得,则AC+BD与AB的大小关系是()A.AC+BD<ABB.AC+BD=ABC.AC+BD≥ABD.不能确定解析:将AB沿AC平移到CE,连结BE、DE,由平移的特征可知AB=CE,AC=BE,因为∠OCE=∠AOC=60°,AB=CD,则△16\nCDE为等边三角形,即CD=DE=CE=AB.因为DB+BE>DE,所以BD+AC>AB,而当AC∥DB时,BD+AC=AB,故选C.答案:C好题4:求点P(2,3)关于直线=1的对称点的坐标.解析:本题容易出现错解:点P(2,3)关于直线=1的对称点的坐标为(-2,3).错解分析:误将直线=1当作轴(即直线=0).在平面直角坐标系中点P(a,b)关于直线=h的对称点.由于受关于坐标轴对称的点的坐标特点的思维定势的影响,不少同学以为点P(a,b)关于直线=h的对称点也为P(-a,b),这是一种错误思路,在学习中应结合图形加以分析.答案:点P(2,3)关于直线=1的对称点的坐标为(0,3).好题5:如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.(1)当AE=5,P落在线段CD上时,PD=;(2)当P落在直角梯形ABCD内部时,PD的最小值等于.解析:理解直角梯形的性质,理解翻折的实质.答案:(1)2(2)考点十统计与概率【易错分析】易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数.易错点2:在从统计图获取信息时,一定要先判断统计图的准确性.不规则的统计图往往使人产生错觉,得到不准确的信息.易错点3:对全面调查与抽样调查的概念及它们的适用范围不清楚,造成错误.易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差.易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率.【好题闯关】好题1.在一次数学竞赛中,10名学生的成绩如下:75808070859570657080.则这次竞赛成绩的众数是多少?解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.答案:这组数据的众数是70和80.好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示: 则该班学生右眼视力的中位数是_______.解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、016\n.6、0.7、0.8、1.0、1.2、1.5,则知排在第6个的数是0.6.但注意观察可以发现:题目中的视力数据实际是小组数据,小组的人数才是视力数据的真正个数.因此,不能直接求视力数据的中位数,而应先求出53名学生视力数据的中间数据,即第27名学生的视力就是本班学生右眼视力的中位数.答案:(53+1)÷2=27,所以第27名学生的右眼视力为中位数,从表中人数栏数出第27名学生所对应的右眼视力为0.8,即该班学生右眼视力的中位数是0.8.好题3.样本―a,―1,0,1,a的方差是()A.B.C.D.解析:本例中因为数据0不影响求出的平均数,因此常常会被忽略为一个数据的存在,导致算出样本的平均数是0则的失误.答案:平均数是0,,选C.好题4.如图,一则报纸上广告绘制了下面的统计图,并称“乙品牌牛奶每天销售量是甲品牌牛奶每天销售量的3倍”.请分析这则广告信息正确吗?解析:在从统计图获取信息时,一定要先判断统计图的准确性.不规则的统计图往往使人产生错觉,得到不准确的信息.从图中标明的数据看,甲牛奶每天的销售量是510万袋,乙牛奶的每天的销售量是530万袋,只比甲种牛奶多了20万袋.乙牛奶的销售量并不是甲品牌牛奶销售量的3倍.由于统计图制作的不规范,容易误导消费者认为乙牛奶是消费是甲牛奶消费的3倍.答案:基于上面的剖析,这则广告的宣传是不正确的.好题5.指出下列调查运用那种调查方式合适:(1)为了了解全班学生中观看“开心辞典”这一节目的人数作的调查;(2)为了了解中学生的身体发育情况,对全国八年级男生的身高情况作的调查;(3)为了了解一批药物的药效持续时间作的调查;(4)为了了解全国的“甲流”疫情作的调查;(5)为了了解全校初中三年级学生的学习压力情况作的调查.解析:全面调查可以直接获得总体的情况,结果准确,但是收集、整理、计算数据的工作量大.当总体中个体的数目较多时,无法对所有个体进行调查,或调查本身带有破坏性,不能全面调查时就要采取抽样调查的方法,其优点是调查范围小,节省人力、物力、时间,但调查结果不如普查准确.因此,在实际生活中,要收集数据是采取普查的方式还是采取抽样调查的方式,既要考虑问题本身的需要,又要考虑实现的可能性和所付出的代价的大小.在本题中,要调查全班学生中观看“开心辞典”这一节目的人数,由于调查范围很小,因此用全面调查的方式合适;要调查全国八年级男生的身高情况,由于调查范围太大,实现的可能性极小,加之对调查结果的精确度要求并不是太高,因此用抽样调查的方式合适;要了解一批药物的药效持续时间,普查具有破坏性,因此适合作抽样调查;全国的“甲流”疫情,关系到国计民生,即使代价再大,也要采取普查的方式;要调查全校初中三年级学生的学习压力情况,由于调查范围很小,因此用全面调查的方式合适.16\n答案:(1)、(4)、(5)用全面调查的方式合适,(2)、(3)用抽样调查的方式合适.好题6.买彩票中奖的概率是,买1000张彩票是否能中奖?解析:即使告诉你中奖的概率是,买1000张彩票也不一定能中奖,因为买的每一张彩票是否中奖仍然是不确定事件.答案:不一定会中奖.好题7.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.随机地抽取一张作为十位上的数字,放回后再抽取一张作为个位上的数字,试利用树状图探究能组成哪些两位数?恰好是“偶数”的可能性为多少?解析:本例中没有很好的理解抽取卡片的操作程序,忽略了关键词“放回后再抽取”,从而导致失误.答案:正确的树状分析图如下:能组成11,12,13,21,22,23,31,32,33,恰为偶数的可能性是:.好题8.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,那么现年20岁的这种动物活到25岁的概率是多少?解析:不能简单地将本题看成概率的累加,应计算这种动物从20岁活到25岁的数量与活到20岁的数量的比.答案:设出生时动物数量为a,则活到20岁的数量为0.8a,活到25岁的数量为0.5a,所以现年20岁的这种动物活到25岁的概率是.16
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)