2022年江苏省苏州市中考数学试题(解析版)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2022年苏州市初中学业水平考试试卷数学一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.下列实数中,比3大的数是()A.5B.1C.0D.-2【答案】A【解析】【分析】根据有理数的大小比较法则比较即可.【详解】解:因为-2<0<1<3<5,所以比3大的数是5,故选:A.【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.2.2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为()A.B.C.D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:141260=,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.B.C.D.【答案】B【解析】【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D学科网(北京)股份有限公司,选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.【详解】A.,故A不正确;B.,故B正确;C.,故C不正确;D.,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.4.为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为()A.60人B.100人C.160人D.400人【答案】C【解析】【分析】根据参加“书法”的人数为80人,占比为,可得总人数,根据总人数乘以即可求解.【详解】解:总人数为.则参加“大合唱”的人数为人.故选C.【点睛】本题考查了扇形统计图,从统计图获取信息是解题的关键.5.如图,直线AB与CD相交于点O,,,则的度数是()学科网(北京)股份有限公司,A.25°B.30°C.40°D.50°【答案】D【解析】【分析】根据对顶角相等可得,之后根据,即可求出.【详解】解:由题可知,,.故选:D.【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.6.如图,在的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A.B.C.D.【答案】A【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:由图可知,总面积为:5×6=30,,学科网(北京)股份有限公司,∴阴影部分面积为:,∴飞镖击中扇形OAB(阴影部分)的概率是,故选:A.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.B.C.D.【答案】B【解析】【分析】根据题意,先令在相同时间内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度,走路慢的人的速度,再根据题意设未知数,列方程即可【详解】解:令在相同时间内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度,走路慢的人的速度,设走路快的人要走x步才能追上,根据题意可得,根据题意可列出的方程是,故选:B.【点睛】本题考查应用一元一次方程解决数学史问题,读懂题意,找准等量关系列方程是解决问题的关键.8.如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方学科网(北京)股份有限公司,向旋转60°得到线段AC.若点C的坐标为,则m的值为()A.B.C.D.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得,可得,,从而,即可解得.【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:∵CD⊥x轴,CE⊥y轴,∴∠CDO=∠CEO=∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),学科网(北京)股份有限公司,∴CE=m=OD,CD=3,OA=2,∴AE=OE−OA=CD−OA=1,∴,在Rt△BCD中,,在Rt△AOB中,,∵OB+BD=OD=m,∴,化简变形得:3m4−22m2−25=0,解得:或(舍去),∴,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.9.计算:_______.【答案】a4【解析】【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案.【详解】解:a3•a,=a3+1,=a4.故答案为:a4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.10.已知,,则______.【答案】24【解析】【分析】根据平方差公式计算即可.【详解】解:∵,,学科网(北京)股份有限公司,∴,故答案:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.11.化简的结果是______.【答案】x【解析】【分析】根据分式的减法进行计算即可求解.【详解】解:原式=.故答案为:.【点睛】本题考查了分式的减法,正确的计算是解题的关键.12.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为______.【答案】6【解析】【分析】分类讨论:AB=AC=2BC或BC=2AB=2AC,然后根据三角形三边关系即可得出结果.【详解】解:∵△ABC是等腰三角形,底边BC=3∴AB=AC当AB=AC=2BC时,△ABC是“倍长三角形”;当BC=2AB=2AC时,AB+AC=BC,根据三角形三边关系,此时A、B、C不构成三角形,不符合题意;所以当等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.13.如图,AB是的直径,弦CD交AB于点E,连接AC,AD.若,则______°学科网(北京)股份有限公司,【答案】62【解析】【分析】连接,根据直径所对圆周角是90°,可得,由,可得,进而可得.【详解】解:连接,∵AB是的直径,∴,,,故答案为:62【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.14.如图,在平行四边形ABCD中,,,,分别以A,C为圆心,大于的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF,则四边形AECF的周长为______.学科网(北京)股份有限公司,【答案】10【解析】【分析】根据作图可得,且平分,设与的交点为,证明四边形为菱形,根据平行线分线段成比例可得为的中线,然后勾股定理求得,根据直角三角形中斜边上的中线等于斜边的一半可得的长,进而根据菱形的性质即可求解.【详解】解:如图,设与的交点为,根据作图可得,且平分,,四边形是平行四边形,,,又,,,,,四边形是平行四边形,垂直平分,,四边形是菱形,,,,,学科网(北京)股份有限公司,为的中点,中,,,,,四边形AECF的周长为.故答案为:.【点睛】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为______.【答案】【解析】【分析】根据函数图像,结合题意分析分别求得进水速度和出水速度,即可求解.【详解】解:依题意,3分钟进水30升,则进水速度为升/分钟,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完直至容器中的水全部排完,则排水速度为升/分钟,,解得.故答案为:.【点睛】本题考查了函数图象问题,从函数图象获取信息是解题的关键.学科网(北京)股份有限公司,16.如图,在矩形ABCD中.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为,点N运动的速度为,且.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形.若在某一时刻,点B的对应点恰好在CD的中点重合,则的值为______.【答案】【解析】【分析】在矩形ABCD中,设,运动时间为,得到,利用翻折及中点性质,在中利用勾股定理得到,然后利用得到,在根据判定的得到,从而代值求解即可.【详解】解:如图所示:在矩形ABCD中,设,运动时间,,在运动过程中,将四边形MABN沿MN翻折,得到四边形,学科网(北京)股份有限公司,,若在某一时刻,点B的对应点恰好在CD的中点重合,,在中,,则,,,,,,,,,则,,即,在和中,,,即,,故答案为:.【点睛】本题属于矩形背景下的动点问题,涉及到矩形的性质、对称性质、中点性质、两个三角形相似的判定与性质、勾股定理及两个三角形全等的判定与性质等知识点,熟练掌握相关性质及判定,求出相应线段长是解决问题的关键.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色学科网(北京)股份有限公司,墨水签字笔.17.计算:.【答案】6【解析】分析】先化简各式,然后再进行计算即可;【详解】解:原式【点睛】本题考查了零指数幂、绝对值、平方,准确化简式子是解题的关键.18.解方程:.【答案】【解析】【分析】根据解分式方程的步骤求出解,再检验即可.【详解】方程两边同乘以,得.解方程,得.经检验,是原方程的解.【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.即去分母,去括号,移项,合并同类项,系数化为1,检验.19.已知,求的值.【答案】,3【解析】【分析】先将代数式化简,根据可得,整体代入即可求解.【详解】原式.∵,学科网(北京)股份有限公司,∴.∴原式.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.20.一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)【答案】(1)(2)2次摸到的球恰好是1个白球和1个红球的概率为【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)画树状图表示所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【小问1详解】解:∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,∴搅匀后从中任意摸出1个球,则摸出白球的概率为:.故答案为:;【小问2详解】解:画树状图,如图所示:共有16种不同的结果数,其中两个球颜色不同的有6种,∴2次摸到的球恰好是1个白球和1个红球的概率为.【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F.学科网(北京)股份有限公司,(1)求证:;(2)若,求的度数.【答案】(1)见解析(2)【解析】【分析】(1)由矩形与折叠的性质可得,,从而可得结论;(2)先证明,再求解,结合对折的性质可得答案.【小问1详解】证明:将矩形ABCD沿对角线AC折叠,则,.在△DAF和△ECF中,∴.【小问2详解】解:∵,∴.∵四边形ABCD是矩形,∴.∴,∵,∴.【点睛】本题考查的是全等三角形的判定与性质,轴对称的性质,矩形的性质,熟练的运用轴对称的性质证明边与角的相等是解本题的关键.22.某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,学科网(北京)股份有限公司,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:培训前成绩(分)678910划记正正正正人数(人)124754培训后成绩(分)678910划记一正正正正人数(人)413915(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m______n;(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?【答案】(1)<(2)测试成绩为“6分”的百分比比培训前减少了25%(3)测试成绩为“10分”的学生增加了220人【解析】【分析】(1)先分别求解培训前与培训后的中位数,从而可得答案;(2)分别求解培训前与培训后得6分的人数所占的百分比,再作差即可;(3)分别计算培训前与培训后得满分的人数,再作差即可.【小问1详解】解:由频数分布表可得:培训前的中位数为:培训后的中位数为:所以故答案为:;小问2详解】答:测试成绩为“6分”的百分比比培训前减少了25%.【小问3详解】学科网(北京)股份有限公司,培训前:,培训后:,.答:测试成绩为“10分”的学生增加了220人.【点睛】本题考查的是频数分布表,中位数的含义,利用样本估计总体,理解题意,从频数分布表中获取信息是解本题的关键.23.如图,一次函数的图像与反比例函数的图像交于点,与y轴交于点B,与x轴交于点.(1)求k与m的值;(2)为x轴上的一动点,当△APB的面积为时,求a的值.【答案】(1)k的值为,的值为6(2)或【解析】【分析】(1)把代入,先求解k的值,再求解A的坐标,再代入反比例函数的解析式可得答案;(2)先求解.由为x轴上的一动点,可得.由,建立方程求解即可.【小问1详解】解:把代入,得.∴.学科网(北京)股份有限公司,把代入,得.∴.把代入,得.∴k的值为,的值为6.【小问2详解】当时,.∴.∵为x轴上的一动点,∴.∴,.∵,∴.∴或.【点睛】本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键.24.如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.(1)求证:为的切线;学科网(北京)股份有限公司,(2)连接BD,取BD的中点G,连接AG.若,,求AG的长.【答案】(1)见解析(2)【解析】【分析】(1)方法一:如图1,连接OC,OD.由,,可得,由是的直径,D是的中点,,进而可得,即可证明CF为的切线;方法二:如图2,连接OC,BC.设.同方法一证明,即可证明CF为的切线;(2)方法一:如图3,过G作,垂足为H.设的半径为r,则.在Rt△OCF中,勾股定理求得,证明,得出,根据,求得,进而求得,根据勾股定理即可求得;方法二:如图4,连接AD.由方法一,得.,D是的中点,可得,根据勾股定理即可求得.【小问1详解】(1)方法一:如图1,连接OC,OD.∵,∴.∵,∴.∵,∴.∵是的直径,D是的中点,∴.∴.∴,即.∴.∴CF为的切线.学科网(北京)股份有限公司,方法二:如图2,连接OC,BC.设.∵AB是的直径,D是的中点,∴.∴.∵,∴.∴.∵,∴.∴.∵AB是的直径,∴.∴.∴,即.∴.∴CF为的切线.【小问2详解】解:方法一:如图3,过G作,垂足为H.设的半径为r,则.学科网(北京)股份有限公司,在Rt△OCF中,,解之得.∵,∴.∵,∴.∴.∴.∵G为BD中点,∴.∴,.∴.∴.方法二:如图4,连接AD.由方法一,得.∵AB是的直径,∴.∵,D是的中点,∴.∵G为BD中点,学科网(北京)股份有限公司,∴.∴.【点睛】本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.25.某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m的最大值为22【解析】【分析】(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元,根据总费用列方程组即可;(2)设水果店第三次购进x千克甲种水果,根据题意先求出x的取值范围,再表示出总利学科网(北京)股份有限公司,润w与x的关系式,根据一次函数的性质判断即可.【小问1详解】设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元.根据题意,得解方程组,得答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.【小问2详解】设水果店第三次购进x千克甲种水果,则购进千克乙种水果,根据题意,得.解这个不等式,得.设获得的利润为w元,根据题意,得.∵,∴w随x的增大而减小.∴当时,w的最大值为.根据题意,得.解这个不等式,得.∴正整数m的最大值为22.【点睛】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.26.如图,在二次函数(m是常数,且)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.学科网(北京)股份有限公司,(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求的度数;(2)若,求m的值;(3)若在第四象限内二次函数(m是常数,且)的图像上,始终存在一点P,使得,请结合函数的图像,直接写出m的取值范围.【答案】(1)A(-1,0);B(2m+1,0);C(0,2m+1);(2)(3)【解析】【分析】(1)分别令等于0,即可求得的坐标,根据,即可求得;(2)方法一:如图1,连接AE.由解析式分别求得,,.根据轴对称的性质,可得,由,建立方程,解方程即可求解.方法二:如图2,过点D作交BC于点H.由方法一,得,.证明,根据相似三角形的性质建立方程,解方程即可求解;(3)设PC与x轴交于点Q,当P在第四象限时,点Q总在点B的左侧,此时,即.【小问1详解】当时,.解方程,得,.∵点A在点B的左侧,且,学科网(北京)股份有限公司,∴,.当时,.∴.∴.∵,∴.【小问2详解】方法一:如图1,连接AE.∵,∴,.∴,,.∵点A,点B关于对称轴对称,∴.∴.∴.∵,,∴,即.∵,∴.∴.∵,∴解方程,得.学科网(北京)股份有限公司,方法二:如图2,过点D作交BC于点H.由方法一,得,.∴.∵,∴,.∴.∵,,∴.∴.∴,即.∵,∴解方程,得.学科网(北京)股份有限公司,【小问3详解】.设PC与x轴交于点Q,当P在第四象限时,点Q总在点B的左侧,此时,即.∵,∴.,,∴.解得,又,∴.【点睛】本题考查了二次函数综合,求二次函数与坐标轴的交点,角度问题,解直角三角形,相似三角形的性质,三角形内角和定理,综合运用以上知识是解题的关键.27.(1)如图1,在△ABC中,,CD平分,交AB于点D,//,交BC于点E.学科网(北京)股份有限公司,①若,,求BC的长;②试探究是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,和是△ABC的2个外角,,CD平分,交AB的延长线于点D,//,交CB的延长线于点E.记△ACD的面积为,△CDE的面积为,△BDE的面积为.若,求的值.【答案】(1)①;②是定值,定值为1;(2)【解析】【分析】(1)①证明,根据相似三角形的性质求解即可;②由,可得,由①同理可得,计算;(2)根据平行线的性质、相似三角形的性质可得,又,则,可得,设,则.证明,可得,过点D作于H.分别求得,进而根据余弦的定义即可求解.【详解】(1)①∵CD平分,∴.∵,∴.∴.∵,学科网(北京)股份有限公司,∴.∴.∴.∴.∴.∴.②∵,∴.由①可得,∴.∴.∴是定值,定值为1.(2)∵,∴.∵,∴.又∵,∴.设,则.∵CD平分,学科网(北京)股份有限公司,∴.∵,∴.∴.∵,∴.∴.∴.∵,∴.∴.∴.∴.如图,过点D作于H.∵,∴.∴.【点睛】本题考查了相似三角形的性质与判定,求余弦,掌握相似三角形的性质与判定是解题的关键.学科网(北京)股份有限公司
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)