首页

2023版新高考数学一轮总复习第2章第8讲函数与方程课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/58

2/58

3/58

4/58

剩余54页未读,查看更多内容需下载

第二章函数概念与基本初等函数Ⅰ\n第八讲 函数与方程\n知识梳理·双基自测考点突破·互动探究名师讲坛·素养提升\n知识梳理·双基自测\n知识点一 函数的零点1.函数零点的定义对于函数y=f(x)(x∈D),把使__________成立的实数x叫做函数y=f(x)(x∈D)的零点.注:函数的零点不是点.是函数f(x)与x轴交点的横坐标,而不是y=f(x)与x轴的交点.f(x)=0\n2.几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与______有交点⇔函数y=f(x)有_______.3.函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有______________,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得__________,这个c也就是方程f(x)=0的根.x轴零点f(a)f(b)<0f(c)=0\n知识点二 二分法1.对于在区间[a,b]上连续不断且______________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间___________,使区间的两个端点逐步逼近_______,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;f(a)f(b)<0一分为二零点\n(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε,即:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)(3)(4).\n1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.\n(4)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示.所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶个零点)时,函数值才变号,即相邻两个零点之间的函数值同号.(5)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)·f(b)<0⇒函数f(x)在[a,b]上只有一个零点.\n2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系\n题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)二次函数y=ax2+bx+c(a≠0)在当b2-4ac<0时没有零点.()(3)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()×√×\n(4)若f(x)在区间[a,b]上连续不断,且f(a)·f(b)>0,则f(x)在(a,b)内没有零点.()(5)函数y=2x与y=x2只有两个交点.()[解析](1)函数的零点是函数图象与x轴交点的横坐标.(2)当b2-4ac<0时,抛物线与x轴无交点,故没有零点.(3)函数图象若没有穿过x轴,则f(a)·f(b)>0.(4)若在区间[a,b]内有多个零点,f(a)·f(b)>0也可以.(5)y=x2与y=2x在y轴左侧一个交点,y轴右侧两个交点,如在x=2和x=4处都有交点.××\nB\n[解析]由所给的函数值的表格可以看出,x=2与x=3这两个数字对应的函数值的符号不同,即f(2)·f(3)<0,所以函数在(2,3)内有零点,故选B.\n3.(必修1P155T1改编)下列函数图象与x轴均有交点,其中不能用二分法求图中的函数零点的是()[解析]对于选项C,由题图可知零点附近左右两侧的函数值的符号是相同的,故不能用二分法求解.C\n[解析]通过上述表格得知函数唯一的零点x0在区间(1.375,1.4375)内,故选C.C\n题组三 走向高考5.(2015·安徽,5分)下列函数中,既是偶函数又存在零点的是()A.y=cosxB.y=sinxC.y=lnxD.y=x2+1[解析]y=cosx是偶函数且有无数多个零点,y=sinx为奇函数,y=lnx既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点,故选A.A\n6.(2019·全国卷Ⅲ,5分)函数f(x)=2sinx-sin2x在[0,2π]的零点个数为()A.2B.3C.4D.5[解析]f(x)=2sinx-2sinxcosx=2sinx(1-cosx),令f(x)=0,则sinx=0或cosx=1,所以x=kπ(k∈Z),又x∈[0,2π],所以x=0或x=π或x=2π.故选B.B\n考点突破·互动探究\n考向1确定函数零点所在区间——自主练透(1)若函数f(x)的图象是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是()A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点例1考点一函数的零点D\n(2)函数f(x)=ex-x-2在下列哪个区间内必有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(3)(多选题)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)·(x-c)+(x-c)(x-a)的零点所在区间为()A.(-∞,a)B.(a,b)C.(b,c)D.(c,+∞)(4)已知函数f(x)=logax+x-b(a>0且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=____.CB、C2\n[解析](1)因为f(1)·f(2)·f(4)<0,所以f(1)、f(2)、f(4)中至少有一个小于0.若f(1)<0,则在(0,1)内有零点,在(0,4)内必有零点;若f(2)<0,则在(0,2)内有零点,在(0,4)内必有零点;若f(4)<0,则在(0,4)内有零点.故选D.\n\n(3)易知f(a)=(a-b)(a-c),f(b)=(b-c)(b-a),f(c)=(c-a)(c-b).又a<b<c,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别位于区间(a,b)和(b,c)内,故选B、C.(4)对于函数y=logax,当x=2时,可得y<1,当x=3时,可得y>1,在同一坐标系中画出函数y=logax,y=-x+b的图象,判断两个函数图象的交点的横坐标在(2,3)内,∴函数f(x)的零点x0∈(n,n+1)时,n=2.\n确定函数零点所在区间的方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.\n例2B5\n\n解法二:(图象法)函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点.\n\n函数零点个数的判定有下列几种方法(1)直接求零点:令f(x)=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用该定理不仅要求函数在[a,b]上是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.\n(3)数形结合法:利用函数y=f(x)的图象与x轴的交点的个数,从而判定零点的个数,或转化为两个函数图象交点个数问题.画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.\nC\nCD\n\n\n\n例3D\n\n例4C\n\n若g(x)存在2个零点,则y=f(x)的图象与y=h(x)的图象有2个交点,平移y=h(x)的图象,可知当直线y=-x-a过点(0,1)时,有2个交点,此时1=-0-a,a=-1.当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合题意.当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意.综上,a的取值范围为[-1,+∞).\n1.比较零点大小常用方法:(1)确定零点取值范围,进而比较大小;(2)数形结合法.\n2.已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.\n〔变式训练2〕(1)(角度1)(2022·安徽蚌埠月考)已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=x3+x的零点依次为a,b,c,则a,b,c的大小关系为()A.a<b<cB.a<c<bC.a>b>cD.c>a>bB\n[分析](1)解法一:依据零点存在定理,确定a,b,c所在区间,进而比较大小;解法二:分别作出y=3x、y=log3x、y=x3与y=-x的图象,比较其交点横坐标的大小即可.A\n\n(2)画出函数f(x)的大致图象如图所示.因为函数f(x)在R上有两个零点,所以f(x)在(-∞,0]和(0,+∞)上各有一个零点.当x≤0时,f(x)有一个零点,需0<a≤1;当x>0时,f(x)有一个零点,需-a<0,即a>0.综上,0<a≤1.\n(1)用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈____________,第二次应计算___________.(2)在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可判定该根所在的区间为_____.(3)在用二分法求方程x2=2的正实数根的近似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是____.例5考点二二分法及其应用——自主练透(0,0.5)f(0.25)7\n\n1.用二分法求函数零点的方法:定区间,找中点,中值计算两边看,同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.\n2.利用二分法求近似解需注意的问题(1)在第一步中:①区间长度尽量小;②f(a),f(b)的值比较容易计算且f(a)·f(b)<0;(2)根据函数的零点与相应方程根的关系,求函数的零点与相应方程的根是等价的.(3)虽然二分法未单独考过,但有可能像算法中的“更相减损术”一样,嵌入到程序框图中去考查.\n名师讲坛·素养提升\n函数零点的综合问题设实数a,b是关于x的方程|lgx|=c的两个不同实数根,且a<b<10,则abc的取值范围是_________.[解析]由题意知,如图,在(0,10)上,函数y=|lgx|的图象和直线y=c有两个不同交点,所以ab=1,0<c<lg10=1,所以abc的取值范围是(0,1).例6(0,1)\n以函数图象、图象的变换方法及函数的零点等相关知识为基础,通过作图、想象,发现该问题的相关数学知识及其联系,快速解决该问题.\nA\n\n

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-24 16:00:03 页数:58
价格:¥3 大小:1.61 MB
文章作者:随遇而安

推荐特供

MORE