首页

2019年浙江省温州市中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/25

2/25

剩余23页未读,查看更多内容需下载

2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是(  )A.﹣15B.15C.﹣2D.22.(4分)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为(  )A.0.25×1018B.2.5×1017C.25×1016D.2.5×10163.(4分)某露天舞台如图所示,它的俯视图是(  )A.B.C.D.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为(  )A.16B.13C.12D.235.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有(  )A.20人B.40人C.60人D.80人6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为(  )\n近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y=100xB.y=x100C.y=400xD.y=x4007.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为(  )A.32πB.2πC.3πD.6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为(  )A.95sinα米B.95cosα米C.59sinα米D.59cosα米9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是(  )A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则S1S2的值为(  )\nA.22B.23C.24D.26二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=  .12.(5分)不等式组x+2>3x−12≤4的解为  .13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有  人.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(EDF)上,若∠BAC=66°,则∠EPF等于  度.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为  cm.\n16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为  分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为  分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|−9+(1−2)0﹣(﹣3).(2)x+4x2+3x−13x+x2.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表\n生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.(10分)如图,在平面直角坐标系中,二次函数y=−12x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.\n22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=38AB时,求⊙O的直径长.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.\n(2)设点Q2为(m,n),当nm=17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.\n2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是(  )A.﹣15B.15C.﹣2D.2【解答】解:(﹣3)×5=﹣15;故选:A.2.(4分)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为(  )A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【解答】解:科学记数法表示:250000000000000000=2.5×1017故选:B.3.(4分)某露天舞台如图所示,它的俯视图是(  )A.B.C.D.【解答】解:它的俯视图是:故选:B.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为(  )\nA.16B.13C.12D.23【解答】解:从中任意抽取1张,是“红桃”的概率为16,故选:A.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有(  )A.20人B.40人C.60人D.80人【解答】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为(  )近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y=100xB.y=x100C.y=400xD.y=x400【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=100x.故选:A.7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为(  )A.32πB.2πC.3πD.6π【解答】解:该扇形的弧长=90⋅π⋅6180=3π.故选:C.\n8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为(  )A.95sinα米B.95cosα米C.59sinα米D.59cosα米【解答】解:作AD⊥BC于点D,则BD=32+0.3=95,∵cosα=BDAB,∴sinα=95AB,解得,AB=95cosα米,故选:B.9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是(  )A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.10.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD\n于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则S1S2的值为(  )A.22B.23C.24D.26【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=a2−b2,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴AMGN=MLNL,∴a+ba−b=a−bb,整理得a=3b,∴S1S2=12⋅(a−b)⋅a2−b2a2−b2=22b28b2=24,故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4= (m+2)2 .【解答】解:原式=(m+2)2.故答案为:(m+2)2.\n12.(5分)不等式组x+2>3x−12≤4的解为 1<x≤9 .【解答】解:x+2>3①x−12≤4②,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 90 人.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(EDF)上,若∠BAC=66°,则∠EPF等于 57 度.【解答】解:连接OE,OF\n∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为 12+82 cm.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=2x,IK=2x﹣x,\n∵Rt△CIK中,(2x﹣x)2+x2=22,解得x2=2+2,又∵S菱形BCOI=IO×CK=12IC×BO,∴2x2=12×2×BO,∴BO=22+2,∴BE=2BO=42+4,AB=AE=2BO=4+22,∴△ABE的周长=42+4+2(4+22)=12+82,故答案为:12+82.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为 (5+53) 分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为 4 分米.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.\n∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=12∠COD=30°,∴QM=OP=OC•cos30°=53(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=12OA=5(分米),∴AM=AQ+MQ=5+53.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=EF2−FK2=26(分米)∴BE=10﹣2﹣26=(8﹣26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=62−(23)2=26,∴B′E′=10﹣(26−2)=12﹣26,∴B′E′﹣BE=4.故答案为5+53,4.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)\n17.(10分)计算:(1)|﹣6|−9+(1−2)0﹣(﹣3).(2)x+4x2+3x−13x+x2.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式=x+4−1x2+3x=x+3x(x+3)=1x.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表\n生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【解答】解:(1)x=120×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为12+122=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.\n【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.21.(10分)如图,在平面直角坐标系中,二次函数y=−12x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.【解答】解:(1)令y=0,则−12x2+2x+6=0,解得,x1=﹣2,x2=6,\n∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线x=−2+62=2,∵点B2,B3在二次函数图象上且纵坐标相同,∴6−n+(−n)2=2,∴n=1,∴m=−12×(−1)2+2×(−1)+6=72,∴m,n的值分别为72,1.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=38AB时,求⊙O的直径长.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,\n∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=38AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴BEEC=BGGF=23,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB=102−62=8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF=32+62=35,即⊙O的直径长为35.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B\n游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解答】解:(1)设成人有x人,少年y人,x+y+10=32x=y+12,解得,x=17y=5,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤54,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.\n24.(14分)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm=17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【解答】解:(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=82+42=45,又∵E为BC中点,∴OE=12BC=25;(2)如图1,作EM⊥OC于M,则EM∥CD,\n∵E是BC的中点∴M是OC的中点∴EM=12OB=4,OE=12BC=25∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴CNMN=CDEM=1,∴CN=MN=1,∴EN=12+42=17,∵S△ONE=12EN•OF=12ON•EM,∴OF=3×417=121717,由勾股定理得:EF=OE2−OF2=(25)2−(121717)2=141717,∴tan∠EOF=EFOF=141717121717=76,∴nm=17×76=16,∵n=−12m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,\n∴s=Q3C=22+42=25,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s=(6+4)2+(6−1)2=55,将t=2s=25或t=4s=55代入得2k+b=254k+b=55,解得:k=325b=−5,∴s=352t−5,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=12PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3=62+122=65,∵BQ=65−s=65−352t+5=75−352t,∵cos∠QBH=ABBQ3=BHBQ=1265=255,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t=165;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,\n由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:5,∵Q3Q=s=352t−5,∴Q3G=32t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(32t﹣1)=7−32t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=14,∴2t﹣2=14(7−32t),t=3019,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为165或3019.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/6/309:55:25;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-20 15:00:03 页数:25
价格:¥3 大小:346.48 KB
文章作者:180****8757

推荐特供

MORE