首页

2020年贵州省铜仁市中考数学试卷(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

剩余20页未读,查看更多内容需下载

2020年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4分)﹣3的绝对值是(  )A.﹣3B.3C.D.﹣【分析】直接利用绝对值的定义分析得出答案.【解答】解:﹣3的绝对值是:3.故选:B.2.(4分)我国高铁通车总里程居世界第一,预计到2020年底,高铁总里程大约39000千米,39000用科学记数法表示为(  )A.39×103B.3.9×104C.3.9×10﹣4D.39×10﹣3【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39000有5位,所以可以确定n=5﹣1=4.【解答】解:39000=3.9×104.故选:B.3.(4分)如图,直线AB∥CD,∠3=70°,则∠1=(  )A.70°B.100°C.110°D.120°【分析】直接利用平行线的性质得出∠1=∠2,进而得出答案.【解答】解:∵直线AB∥CD,∴∠1=∠2,第22页共22页\n∵∠3=70°,∴∠1=∠2=180°﹣70°=110°.故选:C.4.(4分)一组数据4,10,12,14,则这组数据的平均数是(  )A.9B.10C.11D.12【分析】对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数,据此列式计算可得.【解答】解:这组数据的平均数为×(4+10+12+14)=10,故选:B.5.(4分)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为(  )A.3B.2C.4D.5【分析】根据相似三角形的周长比等于相似比解答.【解答】解:∵△FHB和△EAD的周长分别为30和15,∴△FHB和△EAD的周长比为2:1,∵△FHB∽△EAD,∴=2,即=2,解得,EA=3,故选:A.6.(4分)实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是(  )A.a>bB.﹣a<bC.a>﹣bD.﹣a>b【分析】根据数轴即可判断a和b的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.第22页共22页\n【解答】解:根据数轴可得:a<0,b>0,且|a|>|b|,则a<b,﹣a>b,a<﹣b,﹣a>b.故选:D.7.(4分)已知等边三角形一边上的高为2,则它的边长为(  )A.2B.3C.4D.4【分析】根据等边三角形的性质:三线合一,利用勾股定理可求解即可.【解答】解:根据等边三角形:三线合一,设它的边长为x,可得:,解得:x=4,x=﹣4(舍去),故选:C.8.(4分)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是(  )A.B.C.D.【分析】分别求出0≤x≤4、4<x<7时函数表达式,即可求解.第22页共22页\n【解答】解:由题意当0≤x≤4时,y=×AD×AB=×3×4=6,当4<x<7时,y=×PD×AD=×(7﹣x)×4=14﹣2x.故选:D.9.(4分)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于(  )A.7B.7或6C.6或﹣7D.6【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解方程即可得到结论.【解答】解:当m=4或n=4时,即x=4,∴方程为42﹣6×4+k+2=0,解得:k=6,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解得:k=7,综上所述,k的值等于6或7,故选:B.10.(4分)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是(  )第22页共22页\nA.①②③B.①③C.①②D.②③【分析】先判断出∠H=90°,进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS),得出EF=EC,∠HEF=∠BCE,判断出△CEF是等腰直角三角形,再用勾股定理求出EC2=17,即可得出①正确;先判断出四边形APFH是矩形,进而判断出矩形AHFP是正方形,得出AP=PH=AH=1,同理:四边形ABQP是矩形,得出PQ=4,BQ=1,FQ=5,CQ=3,再判断出△FPG∽△FQC,得出,求出PG=,再根据勾股定理求得EG=,即△AEG的周长为8,判断出②正确;先求出DG=,进而求出DG2+BE2=,在求出EG2≠,判断出③错误,即可得出结论.【解答】解:如图,在正方形ABCD中,AD∥BC,AB=BC=AD=4,∠B=∠BAD=90°,∴∠HAD=90°,∵HF∥AD,∴∠H=90°,∵∠HAF=90°﹣∠DAM=45°,∴∠AFH=∠HAF.∵AF=,∴AH=HF=1=BE.∴EH=AE+AH=AB﹣BE+AH=4=BC,∴△EHF≌△CBE(SAS),∴EF=EC,∠HEF=∠BCE,第22页共22页\n∵∠BCE+∠BEC=90°,∴HEF+∠BEC=90°,∴∠FEC=90°,∴△CEF是等腰直角三角形,在Rt△CBE中,BE=1,BC=4,∴EC2=BE2+BC2=17,∴S△ECF=EF•EC=EC2=,故①正确;过点F作FQ⊥BC于Q,交AD于P,∴∠APF=90°=∠H=∠HAD,∴四边形APFH是矩形,∵AH=HF,∴矩形AHFP是正方形,∴AP=PH=AH=1,同理:四边形ABQP是矩形,∴PQ=AB=4,BQ=AP1,FQ=FP+PQ=5,CQ=BC﹣BQ=3,∵AD∥BC,∴△FPG∽△FQC,∴,∴,∴PG=,∴AG=AP+PG=,在Rt△EAG中,根据勾股定理得,EG==,第22页共22页\n∴△AEG的周长为AG+EG+AE=++3=8,故②正确;∵AD=4,∴DG=AD﹣AG=,∴DG2+BE2=+1=,∵EG2=()2=≠,∴EG2≠DG2+BE2,故③错误,∴正确的有①②,故选:C.二、填空题:(本题共8个小题,每小题4分,共32分)11.(4分)因式分解:a2+ab﹣a= a(a+b﹣1) .【分析】原式提取公因式即可.【解答】解:原式=a(a+b﹣1).故答案为:a(a+b﹣1).12.(4分)方程2x+10=0的解是 x=﹣5 .【分析】方程移项,把x系数化为1,即可求出解.【解答】解:方程2x+10=0,移项得:2x=﹣10,第22页共22页\n解得:x=﹣5.故答案为:x=﹣5.13.(4分)已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是 y=﹣ .【分析】把点(2,﹣2)代入反比例函数y=(k≠0)中求出k的值,从而得到反比例函数解析式.【解答】解:∵反比例函数y=(k≠0)的图象上一点的坐标为(2,﹣2),∴k=﹣2×2=﹣4,∴反比例函数解析式为y=﹣,故答案为:y=﹣.14.(4分)函数y=中,自变量x的取值范围是 x≥2 .【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:2x﹣4≥0解得x≥2.15.(4分)从﹣2,﹣1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于  .【分析】画树状图得出所有等可能结果,从中找到该点在第三象限的结果数,再利用概率公式求解可得.【解答】解:画树状图如下共有6种等可能情况,该点在第三象限的情况数有(﹣2,﹣1)和(﹣1,﹣2)这2种结果,∴该点在第三象限的概率等于=,第22页共22页\n故答案为:.16.(4分)设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于 7或17 cm.【分析】分两种情况讨论,EF在AB,CD之间或EF在AB,CD同侧,进而得出结论.【解答】解:分两种情况:①当EF在AB,CD之间时,如图:∵AB与CD的距离是12cm,EF与CD的距离是5cm,∴EF与AB的距离为12﹣5=7(cm).②当EF在AB,CD同侧时,如图:∵AB与CD的距离是12cm,EF与CD的距离是5cm,∴EF与AB的距离为12+5=17(cm).综上所述,EF与AB的距离为7cm或17cm.故答案为:7或17.17.(4分)如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=  .第22页共22页\n【分析】依据△A1DB1≌△A1DC(AAS),即可得出A1C=A1B1,再根据折叠的性质,即可得到A1C=BC=2,最后依据勾股定理进行计算,即可得到CD的长,即AB的长.【解答】解:由折叠可得,A1D=AD=4,∠A=∠EA1D=90°,∠BA1E=∠B1A1E,BA1=B1A1,∠B=∠A1B1E=90°,∴∠EA1B1+∠DA1B1=90°=∠BA1E+∠CA1D,∴∠DA1B1=∠CA1D,又∵∠C=∠A1B1D,A1D=A1D,∴△A1DB1≌△A1DC(AAS),∴A1C=A1B1,∴BA1=A1C=BC=2,∴Rt△A1CD中,CD==,∴AB=,故答案为:.18.(4分)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m第22页共22页\n,则220+221+222+223+224+…+238+239+240= m(2m﹣1) (结果用含m的代数式表示).【分析】由题意可得220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=220(220×2﹣1),再将220=m代入即可求解.【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).三、解答题:(本题共4个小题,第19题每小题10分,第20,21,22题每小题10分,共40分,要有解题的主要过程)19.(10分)(1)计算:2÷﹣(﹣1)2020﹣﹣(﹣)0.(2)先化简,再求值:(a+)÷(),自选一个a值代入求值.【分析】(1)原式利用除法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×2﹣1﹣2﹣1=4﹣1﹣2﹣1=0;(2)原式=•=•=﹣,第22页共22页\n当a=0时,原式=﹣3.20.(10分)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.【分析】首先利用平行线的性质得出∠ACB=∠DFE,进而利用全等三角形的判定定理ASA,进而得出答案.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).21.(10分)某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m= 36 ,n= 16 ;(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?第22页共22页\n【分析】(1)根据选择书法的学生人数和所占的百分比,可以求得该校参加这次问卷调查的学生人数,然后根据扇形统计图中选择篮球的占28%,即可求得选择篮球的学生人数,从而可以将条形统计图补充完整;(2)根据条形统计图中的数据和(1)中的结果,可以得到m、n的值;(3)根据统计图中的数据,可以计算出该校选择“乒乓球”课外兴趣小组的学生有多少人.【解答】解:(1)该校参加这次问卷调查的学生有:20÷20%=100(人),选择篮球的学生有:100×28%=28(人),补全的条形统计图如右图所示;(2)m%=×100%=36%,n%=×100%=16%,故答案为:36,16;(3)2000×16%=320(人),答:该校选择“乒乓球”课外兴趣小组的学生有320人.22.(10分)如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?第22页共22页\n【分析】过C作CD⊥AB于点D,根据方向角的定义及余角的性质求出∠BCA=30°,∠ACD=60°,证∠ACB=30°=∠BCA,根据等角对等边得出BC=AB=12,然后解Rt△BCD,求出CD即可.【解答】解:过点C作CD⊥AB,垂足为D.如图所示:根据题意可知∠BAC=90°﹣30°=30°,∠DBC=90°﹣30°=60°,∵∠DBC=∠ACB+∠BAC,∴∠BAC=30°=∠ACB,∴BC=AB=60km,在Rt△BCD中,∠CDB=90°,∠BDC=60°,sin∠BCD=,∴sin60°=,∴CD=60×sin60°=60×=30(km)>47km,∴这艘船继续向东航行安全.四、(本大题满分12分)23.(12分)某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.第22页共22页\n(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?【分析】(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,根据用3600元购买排球的个数要比用3600元购买篮球的个数多10个列出方程,解之即可得出结论;(2)设文体商店计划购进篮球m个,总利润y元,根据题意用m表示y,结合m的取值范围和m为整数,即可得出获得最大利润的方案.【解答】解:(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,依题意有+10=,解得x=40,经检验,x=40是原方程的解,90%x=90%×40=36.故每一个篮球的进价是40元,每一个排球的进价是36元;(2)设文体商店计划购进篮球m个,总利润y元,则y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,依题意有,解得0<m≤25且m为整数,∵m为整数,∴y随m的增大而增大,∴m=25时,y最大,这时y=6×25+5400=5550,100﹣25=75(个).故该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.五、(本大题满分12分)24.(12分)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB第22页共22页\n延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,第22页共22页\n∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.六、(本大题满分14分)25.(14分)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.第22页共22页\n【分析】(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)过点P作PF∥y轴,交BC于点F,利用二次函数图象上点的坐标特征可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),进而可得出PF的长度,利用三角形的面积公式可得出S△PBC=﹣3m2+9m,配方后利用二次函数的性质即可求出△PBC面积的最大值;(3)分两种不同情况,当点M位于点C上方或下方时,画出图形,由相似三角形的性质得出方程,求出点M,点N的坐标即可.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,得:,解得:,∴抛物线的解析式为y=﹣2x2+4x+6.(2)过点P作PF∥y轴,交BC于点F,如图1所示.第22页共22页\n当x=0时,y=﹣2x2+4x+6=6,∴点C的坐标为(0,6).设直线BC的解析式为y=kx+c,将B(3,0)、C(0,6)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=﹣2x+6.设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),∴PF=﹣2m2+4m+6﹣(﹣2m+6)=﹣2m2+6m,∴S△PBC=PF•OB=﹣3m2+9m=﹣3(m﹣)2+,∴当m=时,△PBC面积取最大值,最大值为.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴0<m<3.(3)存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似.如图2,∠CMN=90°,当点M位于点C上方,过点M作MD⊥y轴于点D,第22页共22页\n∵∠CDM=∠CMN=90°,∠DCM=∠NCM,∴△MCD∽△NCM,若△CMN与△OBC相似,则△MCD与△NCM相似,设M(a,﹣2a2+4a+6),C(0,6),∴DC=﹣2a2+4a,DM=a,当时,△COB∽△CDM∽△CMN,∴,解得,a=1,∴M(1,8),此时ND=DM=,∴N(0,),当时,△COB∽△MDC∽△NMC,∴,第22页共22页\n解得a=,∴M(,),此时N(0,).如图3,当点M位于点C的下方,过点M作ME⊥y轴于点E,设M(a,﹣2a2+4a+6),C(0,6),∴EC=2a2﹣4a,EM=a,同理可得:或=2,△CMN与△OBC相似,解得a=或a=3,∴M(,)或M(3,0),此时N点坐标为(0,)或(0,﹣).综合以上得,M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M第22页共22页\n(3,0),N(0,﹣),使得∠CMN=90°,且△CMN与△OBC相似.第22页共22页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-14 17:00:02 页数:22
价格:¥5 大小:290.89 KB
文章作者:yuanfeng

推荐特供

MORE