第21章二次函数与反比例函数小结与复习课件(沪科版)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/53
2/53
3/53
4/53
剩余49页未读,查看更多内容需下载
第21章二次函数与反比例函数小结与复习\n要点梳理一般地,形如(a,b,c是常数,)的函数,叫做二次函数.y=ax2+bx+ca≠0[注意](1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b=0,c=0时,y=ax2是特殊的二次函数.1.二次函数的概念\n二次函数y=a(x-h)2+ky=ax2+bx+c开口方向对称轴顶点坐标最值a>0a<0增减性a>0a<02.二次函数的图象与性质:a>0开口向上a<0开口向下x=h(h,k)y最小=ky最大=k在对称轴左边,x↗y↘;在对称轴右边,x↗y↗在对称轴左边,x↗y↗;在对称轴右边,x↗y↘y最小=y最大=\n3.二次函数图像的平移y=ax2左、右平移左加右减上、下平移上加下减y=-ax2写成一般形式沿x轴翻折\n4.二次函数表达式的求法1.一般式法:y=ax2+bx+c(a≠0)2.顶点法:y=a(x-h)2+k(a≠0)3.交点法:y=a(x-x1)(x-x2)(a≠0)\n5.二次函数与一元二次方程的关系二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.\n二次函数y=ax2+bx+c的图像和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac>0有两个重合的交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0\n6.二次函数的应用(1)二次函数的应用包括以下两个方面①用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);②利用二次函数的图像求一元二次方程的近似解.(2)一般步骤:①找出问题中的变量和常量以及它们之间的函数关系;②列出函数关系式,并确定自变量的取值范围;③利用二次函数的图象及性质解决实际问题;④检验结果的合理性,是否符合实际意义.\n7.反比例函数的概念定义:形如________(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.三种表达式方法:或xy=kx或y=kx-1(k≠0).防错提醒:(1)k≠0;(2)自变量x≠0;(3)函数y≠0.\n8.反比例函数的图象和性质(1)反比例函数的图象:反比例函数(k≠0)的图象是,它既是轴对称图形又是中心对称图形.反比例函数的两条对称轴为直线和;对称中心是:.双曲线原点y=xy=-x\n(2)反比例函数的性质图象所在象限性质(k≠0)k>0一、三象限(x,y同号)在每个象限内,y随x的增大而减小k<0二、四象限(x,y异号)在每个象限内,y随x的增大而增大xyoxyo\n(3)反比例函数比例系数k的几何意义k的几何意义:反比例函数图象上的点(x,y)具有两坐标之积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数|k|.规律:过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数.\n9.反比例函数的应用◑利用待定系数法确定反比例函数:①根据两变量之间的反比例关系,设;②代入图象上一个点的坐标,即x、y的一对对应值,求出k的值;③写出解析式.\n◑反比例函数与一次函数的图象的交点的求法求直线y=k1x+b(k1≠0)和双曲线(k2≠0)的交点坐标就是解这两个函数解析式组成的方程组.◑利用反比例函数相关知识解决实际问题过程:分析实际情境→建立函数模型→明确数学问题注意:实际问题中的两个变量往往都只能取非负值.\n考点一求抛物线的顶点、对称轴、最值考点讲练例1抛物线y=x2-2x+3的顶点坐标为________.解析:方法一:配方,得y=x2-2x+3=(x-1)2+2,则顶点坐标为(1,2).方法二代入公式,,则顶点坐标为(1,2).(1,2)\n解决此类题目可以先把二次函数y=ax2+bx+c配方为顶点式y=a(x-h)2+k的形式,得到:对称轴是直线x=h,最值为y=k,顶点坐标为(h,k);也可以直接利用公式求解.方法归纳\n1.对于y=2(x-3)2+2的图像下列叙述正确的是()A.顶点坐标为(-3,2)B.对称轴为y=3C.当x≥3时,y随x的增大而增大D.当x≥3时,y随x的增大而减小C针对训练\n考点二二次函数的图像与性质及函数值的大小比较例2二次函数y=-x2+bx+c的图像如图所示,若点A(x1,y1),B(x2,y2)在此函数图像上,且x1<x2<1,则y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2解析:由图像看出,抛物线开口向下,对称轴是x=1,当x<1时,y随x的增大而增大.∵x1<x2<1,∴y1<y2.故选B.B\n2.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=B.y=x-1C.D.y=-3x2D针对训练\n考点三二次函数y=ax2+bx+c(a≠0)的图像与系数a,b,c的关系例3已知二次函数y=ax2+bx+c的图像如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2.其中正确的个数是()A.1B.2C.3D.4D\n解析:由图像开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图像与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图像上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图像上横坐标为x=1的点在第四象限得出a+b+c<0,由图像上横坐标为x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.故选D.\n方法总结1.可根据对称轴的位置确定b的符号:b=0⇔对称轴是y轴;a、b同号⇔对称轴在y轴左侧;a、b异号⇔对称轴在y轴右侧.这个规律可简记为“左同右异”.2.当x=1时,函数y=a+b+c.当图像上横坐标x=1的点在x轴上方时,a+b+c>0;当图像上横坐标x=1的点在x轴上时,a+b+c=0;当图像上横坐标x=1的点在x轴下方时,a+b+c<0.同理,可由图像上横坐标x=-1的点判断a-b+c的符号.\n3.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1B.b≤-1C.b≥1D.b≤1针对训练\n解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直线x=1的左侧而抛物线y=-x2+2bx+c的对称轴,即b≤1,故选择D.\n考点四抛物线的几何变换例4将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-3【解析】因为y=x2-6x+5=(x-3)2-4,所以向上平移2个单位长度,再向右平移1个单位长度后,得到的解析式为y=(x-3-1)2-4+2,即y=(x-4)2-2.故选B.\n4.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则可能()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向下平移4个单位B针对训练\n考点五二次函数表达式的确定例5已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.待定系数法解:设所求的二次函数为y=ax2+bx+c,由题意得:解得,a=2,b=-3,c=5.∴所求的二次函数为y=2x2-3x+5.\n5.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的表达式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,-5)所以其表达式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5针对训练\n例6若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( )A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=﹣7D.x1=﹣1,x2=7解析:∵二次函数y=x2+mx的对称轴是x=3,∴=3,解得m=-6,∴关于x的方程x2+mx=7可化为x2-6x-7=0,即(x+1)(x-7)=0,解得x1=-1,x2=7.故选D.考点六二次函数与一元二次方程\n例7某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?考点七二次函数的应用\n解:(1)根据题意,得解得k=-1,b=120.故所求一次函数的表达式为y=-x+120.(2)W=(x-60)•(-x+120)=-x2+180x-7200=-(x-90)2+900,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而60≤x≤60×(1+45%),即60≤x≤87,∴当x=87时,W有最大值,此时W=-(87-90)2+900=891.\n例8如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°,AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.(1)用含有x的代数式表示BF的长;(2)设四边形DEBG的面积为S,求S与x的函数关系式;(3)当x为何值时,S有最大值?并求出这个最大值.\n解:(1)由题意,得EF=AE=DE=BC=x,AB=30.∴BF=2x-30.(2)∵∠F=∠A=45°,∠CBF-=∠ABC=90°,∴∠BGF=∠F=45°,BG=BF=2x-30.所以S△DEF-S△GBF=DE2-BF2=x2-(2x-30)2=x2+60x-450.(3)S=x2+60x-450=(x-20)2+150.∵a=<0,15<20<30,∴当x=20时,S有最大值,最大值为150.\n考点八反比例函数的概念1.下列函数中哪些是正比例函数?哪些是反比例函数?①y=3x-1②y=2x2⑤y=3x③④⑥⑦⑧针对训练\n2.已知点P(1,-3)在反比例函数的图象上,则k的值是()A.3 B.-3C.D.B3.若是反比例函数,则a的值为()A.1B.-1C.±1D.任意实数A\n例9已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1解析:方法①分别把各点代入反比例函数求出y1,y2,y3的值,再比较出其大小即可.方法②:根据反比例函数的图象和性质比较.考点九反比例函数的图象和性质D\n总结:比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.\n已知点A(x1,y1),B(x2,y2)(x1<0<x2)都在反比例函数(k<0)的图象上,则y1与y2的大小关系(从大到小)为.y1>0>y2针对训练\n例10如图,两个反比例函数和在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为.1考点十与反比例函数k有关的问题\n如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数(x>0)和(x>0)的图象交于P,Q两点,若S△POQ=14,则k的值为.20针对训练\n考点十一反比例函数的应用例11如图,已知A(-4,),B(-1,2)是一次函数y=kx+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数的值大于反比例函数的值;OBAxyCD解:当-4<x<-1时,一次函数的值大于反比例函数的值.\n(2)求一次函数解析式及m的值;解:把A(-4,),B(-1,2)代入y=kx+b中,得-4k+b=,-k+b=2,解得k=,b=,所以一次函数的解析式为y=x+.把B(-1,2)代入中,得m=-1×2=-2.\n(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.OBAxyCDP∵△PCA面积和△PDB面积相等,∴AC·[t-(-4)]=BD·[2-[2-(t+)],解得:t=.∴点P的坐标为(,).解:设点P的坐标为(t,t+),P点到直线AC的距离为t-(-4),P点到直线BD的距离为2-(t+).\n总结:此类一次函数,反比例函数,二元一次方程组,三角形面积等知识的综合运用,其关键是理清解题思路.在直角坐标系中,求三角形或四边形面积时,是要选取合适的底边和高,正确利用坐标算出线段长度.\n如图,设反比例函数的解析式为(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点P的纵坐标为2,求k的值;Oyx解:由题意知点P在正比例函数y=2x上,把P的纵坐标2带入该解析式,得P(1,2),把P(1,2)代入,得到P2针对训练\n(2)若该反比例函数与过点M(-2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式;解:把M(-2,0)代入y=kx+b,得b=2k,∴y=kx+2k,OAyBxMlN解得x=-3或1.y=kx+2k,∴∴B(-3,-k),A(1,3k).\n∵△ABO的面积为∴2·3k·+2·k·=解得∴直线l的解析式为y=x+.OyxMlNA(1,3k)B(-3,-k)\n(3)在第(2)题的条件下,当x取何值时,一次函数的值小于反比例函数的值?OyxMlNA(1,3k)B(-3,-k)解:当x<-3或0<x<1时,一次函数的值小于反比例函数的值.\n例4病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时)成正比例;2小时后y与x成反比例(如图).根据以上信息解答下列问题:(1)求当0≤x≤2时,y与x的函数解析式;解:当0≤x≤2时,y与x成正比例函数关系.设y=kx,由于点(2,4)在线段上,所以4=2k,k=2,即y=2x.Oy/毫克x/小时24\n(2)求当x>2时,y与x的函数解析式;解:当x>2时,y与x成反比例函数关系,设解得k=8.由于点(2,4)在反比例函数的图象上,所以即Oy/毫克x/小时24\n(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?解:当0≤x≤2时,含药量不低于2毫克,即2x≥2,解得x≥1,∴1≤x≤2;当x>2时,含药量不低于2毫克,即≥2,解得x≤4.∴2<x≤4.所以服药一次,治疗疾病的有效时间是1+2=3(小时).Oy/毫克x/小时24\n二次函数二次函数的概念二次函数与一元二次方程的联系二次函数的图象与性质课堂小结不共线三点确定二次函数的表达式二次函数的应用\n课堂小结反比例函数定义图象性质x,y的取值范围增减性对称性k的几何意义应用在实际生活中的应用在物理学科中的应用
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)