首页

第21章二次函数与反比例函数21.5反比例函数第2课时反比例函数的图象和性质课件(沪科版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/44

2/44

3/44

4/44

剩余40页未读,查看更多内容需下载

21.5反比例函数第2课时反比例函数的图象和性质\n学习目标1.经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程(重点、难点)2.会画反比例函数图象,了解和掌握反比例函数的图象和性质.(重点)3.能够初步应用反比例函数的图象和性质解题.(重点、难点)\n导入新课我们已经学习过的函数有哪些?你还记得画这些函数图象时的方法吗?写出一个反比例函数,你能画出它的图象吗?复习引入\n反比例函数的图象和性质讲授新课例1画反比例函数与的图象.合作探究提示:画函数的图象步骤一般分为:列表→描点→连线.需要注意的是在反比例函数中自变量x不能为0.\n解:列表如下:x…-6-5-4-3-2-1123456……………-1-1.2-1.5-2-3-66321.51.21-2-2.4-3-4-66432.42\nO-2描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.56xy4321123456-3-4-1-5-6-1-2-3-4-5-6连线:用光滑的曲线顺次连接各点,即可得 的图象.\n观察这两个函数图象,回答问题:思考:(1)每个函数图象分别位于哪些象限?(2)在每一个象限内,随着x的增大,y如何变化?你能由它们的解析式说明理由吗?(3)对于反比例函数(k>0),考虑问题(1)(2),你能得出同样的结论吗?\n●由两条曲线组成,且分别位于第一、三象限它们与x轴、y轴都不相交;●在每个象限内,y随x的增大而减小.反比例函数(k>0)的图象和性质:\n1.反比例函数的图象大致是()CyA.xyoB.xoD.xyoC.xyo练一练\n2.已知反比例函数的图象过点(-2,-3),函数图象上有两点A(,y1),B(5,y2),则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.无法确定C提示:由题可知反比例函数的解析式为,因为6>0,且A,B两点均在该函数图象的第一象限部分,根据>5,可知y1,y2的大小关系.\n观察与思考当k=-2,-4,-6时,反比例函数的图象,有哪些共同特征?回顾上面我们利用函数图象,从特殊到一般研究反比例函数(k>0)的性质的过程,你能用类似的方法研究反比例函数(k<0)的图象和性质吗?\nyxOyxOyxO\n反比例函数(k<0)的图象和性质:●由两条曲线组成,且分别位于第二、四象限它们与x轴、y轴都不相交;●在每个象限内,y随x的增大而增大.\n归纳:(1)当k>0时,双曲线的两支分别位于第一、三象限,在每一象限内,y随x的增大而减小;(2)当k<0时,双曲线的两支分别位于第二、四象限,在每一象限内,y随x的增大而增大.一般地,反比例函数的图象是双曲线,它具有以下性质:k的正负决定反比例函数所在的象限和增减性\n点(2,y1)和(3,y2)在函数上,则y1y2(填“>”“<”或“=”).<练一练\n例2已知反比例函数,y随x的增大而增大,求a的值.解:由题意得a2+a-7=-1,且a-1<0.解得a=-3.反比例函数的图象和性质的初步运用\n练一练已知反比例函数在每个象限内,y随着x的增大而减小,求m的值.解:由题意得m2-10=-1,且3m-8>0.解得m=3.\n例3已知反比例函数的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y随x的增大如何变化?解:因为点A(2,6)在第一象限,所以这个函数的图象位于第一、三象限;在每一个象限内,y随x的增大而减小.\n(2)点B(3,4),C(,),D(2,5)是否在这个函数的图象上?解:设这个反比例函数的解析式为,因为点A(2,6)在其图象上,所以有,解得k=12.因为点B,C的坐标都满足该解析式,而点D的坐标不满足,所以点B,C在这个函数的图象上,点D不在这个函数的图象上.所以反比例函数的解析式为.\n(1)图象的另一支位于哪个象限?常数m的取值范围是什么?Oxy例4如图,是反比例函数图象的一支.根据图象,回答下列问题:解:因为这个反比例函数图象的一支位于第一象限,所以另一支必位于第三象限.由因为这个函数图象位于第一、三象限,所以m-5>0,解得m>5.\n(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2).如果x1>x2,那么y1和y2有怎样的大小关系?解:因为m-5>0,所以在这个函数图象的任一支上,y都随x的增大而减小,因此当x1>x2时,y1<y2.\n反比例函数解析式中k的几何意义1.在反比例函数的图象上分别取点P,Q向x轴、y轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:合作探究\n51234-15xyOPS1S2P(2,2)Q(4,1)S1的值S2的值S1与S2的关系猜想S1,S2与k的关系44S1=S2S1=S2=k-5-4-3-21432-3-2-4-5-1Q\nS1的值S2的值S1与S2的关系猜想与k的关系P(-1,4)Q(-2,2)2.若在反比例函数中也用同样的方法分别取P,Q两点,填写表格:44S1=S2S1=S2=-kyxOPQS1S2\n由前面的探究过程,可以猜想:若点P是图象上的任意一点,作PA垂直于x轴,作PB垂直于y轴,矩形AOBP的面积与k的关系是S矩形AOBP=|k|.\nyxOPS我们就k<0的情况给出证明:设点P的坐标为(a,b)AB∵点P(a,b)在函数的图象上,∴,即ab=k.∴S矩形AOBP=PB·PA=-a·b=-ab=-k;若点P在第二象限,则a<0,b>0,若点P在第四象限,则a>0,b<0,∴S矩形AOBP=PB·PA=a·(-b)=-ab=-k.BPA综上,S矩形AOBP=|k|.自己尝试证明k>0的情况.\n点Q是其图象上的任意一点,作QA垂直于y轴,作QB垂直于x轴,矩形AOBQ的面积与k的关系是S矩形AOBQ=.推理:△QAO与△QBO的面积和k的关系是S△QAO=S△QBO=.Q对于反比例函数,AB|k|yxO归纳:反比例函数的面积不变性\nA.SA>SB>SCB.SA<SB<SCC.SA=SB=SCD.SA<SC<SB1.如图,在函数(x>0)的图像上有三点A,B,C,过这三点分别向x轴、y轴作垂线,过每一点所作的两条垂线与x轴、y轴围成的矩形的面积分别为SA,SB,SC,则()yxOABCC练一练\n2.如图,过反比例函数图象上的一点P,作PA⊥x轴于A.若△POA的面积为6,则k=.-12提示:当反比例函数图象在第二、四象限时,注意k<0.yxOPA\n3.若点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,垂足分别为点M,N,若四边形PMON的面积为3,则这个反比例函数的关系式是.或\n例5如图,P,C是函数(x>0)图像上的任意两点,过点P作x轴的垂线PA,垂足为A,过点C作x轴的垂线CD,垂足为D,连接OC交PA于点E.设△POA的面积为S1,则S1=;梯形CEAD的面积为S2,则S1与S2的大小关系是S1S2;△POE的面积S3和S2的大小关系是S2S3.典例精析2S1S2>=S3\n如图所示,直线与双曲线交于A,B两点,P是AB上的点,△AOC的面积S1、△BOD的面积S2、△POE的面积S3的大小关系为.S1=S2<S3练一练解析:由反比例函数面积的不变性易知S1=S2.PE与双曲线的一支交于点F,连接OF,易知,S△OFE=S1=S2,而S3>S△OFE,所以S1,S2,S3的大小关系为S1=S2<S3FS1S2S3\n当堂练习1.反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限B\n2.在同一直角坐标系中,函数y=2x与的图象大致是()OxyOxyOxyOxyA.B.C.D.B\n3.已知反比例函数的图象在第一、三象限内,则m的取值范围是________.4.下列关于反比例函数的图象的三个结论:(1)经过点(-1,12)和点(10,-1.2);(2)在每一个象限内,y随x的增大而减小;(3)双曲线位于二、四象限.其中正确的是(填序号).(1)(3)m>2\n5.在反比例函数(k>0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1-y20.<\nyDBACx6.如图,点A是反比例函数(x>0)的图象上任意一点,AB//x轴交反比例函数(x<0)的图象于点B,以AB为边作平行四边形ABCD,其中点C,D在x轴上,则S平行四边形ABCD=___.325\n7.已知反比例函数y=mxm²-5,它的两个分支分别在第一、第三象限,求m的值.解:因为反比例函数y=mxm²-5的两个分支分别在第一、第三象限,所以有m2-5=-1,m>0,解得m=2.\n8.已知反比例函数的图象经过点A(2,-4).(1)求k的值;解:∵反比例函数的图象经过点A(2,-4),∴把点A的坐标代入表达式,得,解得k=-8.\n(2)这个函数的图象分布在哪些象限?y随x的增大如何变化?解:这个函数的图象位于第二、四象限,在每一个象限内,y随x的增大而增大.\n(3)画出该函数的图象;Oxy解:如图所示:\n(4)点B(1,-8),C(-3,5)是否在该函数的图象上?因为点B的坐标满足该解析式,而点C的坐标不满足该解析式,所以点B在该函数的图象上,点C不在该函数的图象上.解:该反比例函数的解析式为.\n能力提升:8.点(a-1,y1),(a+1,y2)在反比例函数(k>0)的图象上,若y1<y2,求a的取值范围.解:由题意知,在图象的每一支上,y随x的增大而减小.①当这两点在图象的同一支上时,∵y1<y2,∴a-1>a+1,无解;②当这两点分别位于图象的两支上时,∵y1<y2,∴必有y1<0<y2.∴a-1<0,a+1>0,解得:-1<a<1.故a的取值范围为:-1<a<1.\n反比例函数(k≠0)kk>0k<0图象性质图象位于第一、三象限图象位于第二、四象限在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大课堂小结

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-17 13:00:07 页数:44
价格:¥3 大小:367.44 KB
文章作者:随遇而安

推荐特供

MORE