首页

华东师大版初中九年级数学上册教案:24.2直角三角形的性质

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

24.2直角三角形的性质【知识与技能】(1)掌握直角三角形的性质定理,并能灵活运用.(2)继续学习几何证明的分析方法,懂得推理过程中的因果关系.知道数学内容中普遍存在的运动、变化、相互联系和相互转化的规律.【过程与方法】(1)经历探索直角三角形性质的过程,体会研究图形性质的方法.(2)培养在自主探索和合作交流中构建知识的能力.(3)培养识图的能力,提高分析和解决问题的能力,学会转化的数学思想方法.【情感态度】使学生对逻辑思维产生兴趣,在积极参与定理的学习活动中,不断增强主体意识、综合意识.【教学重点】直角三角形斜边上的中线性质定理的应用.【教学难点】直角三角形斜边上的中线性质定理的证明思想方法.一、情境导入,初步认识复习:直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?学生回答:(1)在直角三角形中,两个锐角互余;(2)在直角三角形中,两条直角边的平方和等于斜边的平方(勾股定理).二、思考探究,获取新知除了刚才同学们回答的性质外,直角三角形还具备哪些特殊性质?现在我们一起探索!1.实验操作:要学生拿出事先准备好的直角三角形的纸片.(1)量一量边AB的长度;\n(2)找到斜边的中点,用字母D表示,画出斜边上的中线;(3)量一量斜边上的中线的长度.让学生猜想斜边上的中线与斜边长度之间的关系.2.提出命题:直角三角形斜边上的中线等于斜边的一半.3.证明命题:你能否用演绎推理证明这一猜想?已知,如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.【分析】可“倍长中线”,延长CD至点E,使DE=CD,易证四边形ACBE是矩形,所以CE=AB=2CD.思考还有其他方法来证明吗?还可作如下的辅助线.4.应用:例如图,在Rt△ACB中,∠ACB=90°,∠A=30°.求证:BC=AB【分析】构造斜边上的中线,作斜边上的中线CD,易证△BDC为等边三角形,所以BC=BD=AB.【归纳结论】直角三角形中,30°角所对的直角边等于斜边的一半.三、运用新知,深化理解1.如图,CD是Rt△ABC斜边上的中线,CD=4,则AB=______.2.三角形三个角度度数比为1∶2∶\n3,它的最大边长是4cm,那么它的最小边长为______cm.3.如图,在△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G是CE的中点;(2)∠B=2∠BCE.第3题图第4题图4.如图,△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,求BC的长.【答案】1.82.23.证明:(1)连接DE.∵在Rt△ADB中,DE=AB,又∵BE=AB,DC=BE,∴DC=DE.∵DG⊥CE,∴G为CE的中点.(2)∵BE=ED=DC,∴∠B=∠EDB,∠EDB=2∠BCE,∴∠B=2∠BCE.4.6cm【教学说明】可由学生小组讨论完成,教师归纳.四、师生互动,课堂小结1.直角三角形斜边上的中线等于斜边的一半.2.直角三角形中,30°角所对的直角边等于斜边的一半.3.有斜边上的中点,要考虑构造斜边上的中线或中位线.1.布置作业:从教材相应练习和“习题24.2”中选取.2.完成练习册中本课时练习.本课从复习已学过的直角三角形的性质入手,通过实验操作、猜想、证明探究直角三角形斜边上的中线性质定理,培养学生识图的能力,提高分析和解决问题的能力,在积极参与定理的学习活动中,不断增强主体意识和综合意识.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-15 13:00:06 页数:3
价格:¥3 大小:177.56 KB
文章作者:U-344380

推荐特供

MORE