首页

华东师大版初中九年级数学上册教案:23.3.3相似三角形的性质

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

3.相似三角形的性质【知识与技能】会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【过程与方法】培养学生演绎推理的能力.【情感态度】感受数学来源于生活,来源于实践.【教学重点】1.相似三角形中的对应线段比值的推导;2.相似多边形的周长比、面积比与相似比关系的推导;3.运用相似三角形的性质解决实际问题.【教学难点】相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境导入,初步认识复习:1.判定两个三角形相似的简便方法有哪些?2.在△ABC与△A′B′C′中,AB=10cm,AC=6cm,BC=8cm,A′B′=5cm,A′C′=3cm,B′C′=4cm,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?二、思考探究,获取新知上述两个三角形是相似的,它们对应边的比就是相似比,△ABC∽△A′B′C′,相似比为=2.相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢?一个三角形内有三条主要线段——\n高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学画出上述的两个三角形,作对应边BC和B′C′边上的高,用刻度尺量一量AD与A′D′的长,等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比等于相似比.我们能否用说理的方法来说明这个结论呢?△ABD和△A′B′D′都是直角三角形,且∠B=∠B′.∴△ABD∽△A′B′D′,∴=k思考:相似三角形面积的比与相似比有什么关系?【教学说明】引导学生通过演绎推理来证明.归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.例1如梯形ABCD的对角线交于点O,,已知S△DOC=4,求S△AOB、S△AOD.【分析】∵DC∥AB,∴△DOC∽△BOA,由相似三角形的性质可求出S△AOB、S△AOD.解:∵DC∥AB,∴△DOC∽△BOA,\n三、运用新知,深化理解1.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(图形)的示意图.已知桌面的直径为1.2m,桌面距离地面为1m,若灯泡距离地面3m,则地面上阴影部分的面积为.【教学说明】运用相似三角形对应高的比等于相似比是解决本题的关键.2.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF∶EH=4∶3,求EF、EH的长.【答案】1.0.81πm22.HG=9.6cm;EH=7.2cm【教学说明】充分运用矩形边长的比来建立方程,可使问题得到解决.四、师生互动,课堂小结1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.1.布置作业:从教材相应练习和“习题23.3”中选取.\n2.完成《创优作业》中本课时练习的“课时作业”部分.本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜想出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-15 13:00:05 页数:4
价格:¥3 大小:217.58 KB
文章作者:U-344380

推荐特供

MORE