八年级上华东师大版14.1勾股定理课件
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/24
2/24
3/24
4/24
剩余20页未读,查看更多内容需下载
14.1勾股定理教学目标:体验勾股定理的探索过程,会运用勾股定理解决相关问题;感受数学文化的价值和我国传统数学的成就。
问题解决问题情境某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
(图中每一格代表一平方厘米)观察左图:(1)正方形P的面积是平方厘米。(2)正方形Q的面积是平方厘米。(3)正方形R的面积是平方厘米。121上面三个正方形的面积之间有什么关系?SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三边长度之间存在什么关系吗?活动一Sp=AC2SQ=BC2SR=AB2
这说明在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方那么,在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?想一想
探究活动P的面积(单位长度)Q的面积(单位长度)R的面积(单位长度)图2图3P、Q、R面积关系直角三角形三边关系QPR图2QPR图3ABCABC916259413SP+SQ=SRBC2+AC2=AB2(每一小方格表示1平方厘米)
QPR图1-3QPR图1-4把R看作是四个直角三角形的面积+小正方形面积。
QPR图3QPR图4把R看作是大正方形面积减去四个直角三角形的面积。S正方形R
分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立。做一做13512ABC
概括对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有a2+b2=c2直角三角形两直角边的平方和等于斜边的平方.揭示了直角三角形三条边的关系aABCbc几何语言:∵在Rt△ABC中∠C=90°(已知)∴a2+b2=c2(勾股定理)勾股定理:∟
两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家多年两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。
勾股定理史话勾股定理从被发现到现在已有五千年的历史,远在公元前三千年的巴比伦人就知道和应用它了。我国古代也发现了这个定理,据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五。”同书中还有另一为学者陈子(公元前六七世纪)与荣方的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪(斜)至日”即邪至日2=勾2+股2陈子已不限于:三、四、五的特殊情形,而是推广到一般情形了。人们对勾股定理的认识,经历过一个从特殊到一般的过程,很难区分是谁最先发明的.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多,1940年卢米斯收集了这个定理的370种证明,期中包括大画家达·芬奇和美国总统詹姆士·阿·加菲尔德的证法。到目前为止,已有四百多种证法.
bac勾股定理的证明(一)abcabcabc最早是由1700多年前三国时期的数学家赵爽为《周髀算经》作注时给出的,他用面积法证明了勾股定理你能用面积法证明勾股定理吗?“弦图”
bac勾股定理的证明(二)bacbacbac
美国第二十任总统伽菲尔德的证法在数学史上被传为佳话人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。有趣的总统证法
S梯形=(a+b)(a+b)=(a2+b2)+abS梯形=c2+2·ab=c2+ab即:在Rt△ABC中,∠C=90°c2=a2+b2伽菲尔德证法
abcc2=a2+b2a2=c2-b2b2=c2-a2结论变形直角三角形中,两直角边的平方和等于斜边的平方;
求下列直角三角形中未知边的长:8x17125x练一练解:在直角三角形中,依勾股定理可得:82+X2=172即:X=√172-82=15解:在直角三角形中,依勾股定理可得:52+122=X2即:X=√52+122=13
课堂练习求出下列直角三角形中未知边的长度。6x25248X
例题1:在直角△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边.(1)若a=3,b=4,求c的长(2)若a=5,c=12,求b的长(3)若a:b=3:4,c=15,求a,b的长练习(1)在直角△ABC中,∠A=90°a=5,b=4,则求c的值?(2)在直角△ABC中,∠B=90°,①a=3,b=4,则求c的值?②c=24,b=25,则求a的值?(3)在直角△ABC中,∠c=90°,若a:c=5:13,b=24,求a,c的长
(3)如果一个直角三角形的两条边长分别是5厘米和12厘米,那么这个三角形的周长是多少厘米?可要当心噢!在直角△ABC中,a=3,b=4,则求c的值?
ADBC34已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.我来试一试∟
例题2:如图,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米)解 在Rt△ABC中∠ABC=90゜,BC=2.16,CA=5.41,根据勾股定理得≈4.96(米)
问题解决问题情境某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
课堂小结1.说一说本节课我有哪些收获?2.本节课我还有哪些疑惑?
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)