首页

2025年高考数学一轮复习教学课件第7章 第7课时 向量法求空间角

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/35

2/35

3/35

4/35

剩余31页未读,查看更多内容需下载

必备知识·关键能力·学科素养·核心价值第七章立体几何与空间向量 第7课时 向量法求空间角对应学生用书第178页 考试要求能用空间向量的方法解简单的线线、线面、面面的夹角问题.体会向量方法在研究几何问题中的作用. 链接教材 夯基固本第7课时 向量法求空间角1.异面直线所成的角若异面直线l1,l2所成的角为θ,其方向向量分别是u,v,则cosθ=|cos〈u,v〉|=.2.直线与平面所成的角如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则sinθ=|cos〈u,n〉|=. 3.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n1和n2,则平面α与平面β的夹角即为向量n1和n2的夹角或其补角.设平面α与平面β的夹角为θ,则cosθ=|cos〈n1,n2〉|=. [常用结论]最小角定理如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,其中θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cosθ=cosθ1cosθ2. 一、易错易混辨析(正确的打“√”,错误的打“×”)(1)两条异面直线所成的角与两直线的方向向量所成的角相等.()(2)直线l的方向向量与平面α的法向量的夹角的余角就是直线l与平面α所成的角.()(3)二面角的平面角为θ,则两个面的法向量的夹角也是θ.()(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是[0,π].()×××√ 二、教材经典衍生1.(人教A版选择性必修第一册P36例7改编)已知直线l1的方向向量s1=(1,0,1)与直线l2的方向向量s2=(-1,2,-2),则l1和l2夹角的余弦值为()A.B.C.D.C[设两直线的夹角为θ,所以cosθ=|cos〈s1,s2〉|===.所以l1和l2夹角的余弦值为.]2.(人教A版选择性必修第一册P37例8改编)已知两平面的法向量分别为(0,-1,3),(2,2,4),则这两个平面夹角的余弦值为________.[设两平面夹角为θ,则cosθ==.]√ 3.(人教A版选择性必修第一册P41练习T1改编)二面角α-l-β的棱上有A,B两点,线段AC,BD分别在这个二面角的两个平面内,且都垂直于棱l.已知AB=1,AC=2,BD=3,CD=2,则平面α与平面β的夹角为________.[设平面α与平面β的夹角为θ,由=可得,==+++2+2+2=4+1+9+2cos〈〉=14-12cosθ=(2)2.所以cosθ=,即平面α与平面β的夹角为.] 4.(人教A版选择性必修第一册P38练习T2改编)PA,PB,PC是从点P出发的三条射线,其中∠APC=∠BPC=45°,∠APB=60°,则直线PC与平面PAB所成角的余弦值为________.[过PC上一点D作DO⊥平面APB,如图,则∠DPO就是直线PC与平面PAB所成的角.因为∠APC=∠BPC=45°,所以点O在∠APB的平分线上,即∠OPE=30°.过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.设PE=1,因为∠OPE=30°,所以OP==,在Rt△PED中,∠DPE=45°,PE=1,则PD=.在Rt△DOP中,OP=,PD=,则cos∠DPO==.即直线PC与平面PAB所成角的余弦值是.] 典例精研 核心考点第7课时 向量法求空间角考点一 异面直线所成的角[典例1](1)如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=,BC=2,点D为BC的中点,则异面直线AD与A1C所成的角为()A.B.C.D.(2)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,=λ(0<λ<1),若异面直线D1E和A1F所成角的余弦值为,则λ的值为________.√ (1)B(2)[(1)因为AB2+AC2=BC2,所以∠BAC=90°.以A为原点,AB,AC,AA1所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,则A(0,0,0),A1(0,0,),B(,0,0),C(0,,0),所以D,所以==(0,,-),所以cos〈〉==,所以〈〉=.故选B.(2)以D为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系(图略).因为正方体的棱长为2,则A1(2,0,2),D1(0,0,2),E(0,2,1),A(2,0,0).所以=(0,2,-1),==+λ=(0,0,-2)+λ(-2,0,0)=(-2λ,0,-2).则|cos〈〉|===,解得λ=.] 名师点评用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值. [跟进训练]1.(2024·浙江绍兴模拟)“曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA1⊥平面ABCD,AA1=4,底面扇环所对的圆心角为的长度是长度的2倍,CD=1,则异面直线A1D1与BC1所成角的正弦值为()A.B.C.D.√ C[设上底面圆心为O1,下底面圆心为O,连接OO1,OC,OB,以O为原点,分别以OC,OB,OO1所在直线为x轴、y轴、z轴建立空间直角坐标系,由底面扇环所对的圆心角为的长度是长度的2倍,CD=1,可知OC=1,则C1(1,0,4),A(0,2,0),B(0,1,0),D1(2,0,4),A1(0,2,4),则=(2,-2,0),=(1,-1,4),cos〈〉===,又异面直线所成角的范围为,故异面直线A1D1与BC1所成角的正弦值为=.故选C.] 考点二 直线与平面所成的角[典例2](2022·北京高考)如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN. [解](1)证明:如图,取BC的中点D,连接B1D,DN,在三棱柱ABC-A1B1C1中,A1B1∥AB,A1B1=AB.因为M,N,D分别为A1B1,AC,BC的中点,所以B1M∥AB,B1M=AB,DN∥AB,DN=AB,即B1M∥DN且B1M=DN,所以四边形B1MND为平行四边形,因此B1D∥MN.又MN⊄平面BCC1B1,B1D⊂平面BCC1B1,所以MN∥平面BCC1B1. (2)选条件①:因为侧面BCC1B1为正方形,所以CB⊥BB1,又因为平面BCC1B1⊥平面ABB1A1,且平面BCC1B1∩平面ABB1A1=BB1,所以CB⊥平面ABB1A1,而AB⊂平面ABB1A1,所以CB⊥AB,由(1)得B1D∥MN,又因为AB⊥MN,所以AB⊥B1D,而B1D∩CB=D,所以AB⊥平面BCC1B1.在三棱柱ABC-A1B1C1中,BA,BC,BB1两两垂直,故以B为坐标原点,分别以BC,BA,BB1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,因为AB=BC=BB1=2,则B(0,0,0),N(1,1,0),M(0,1,2),A(0,2,0),所以=(1,1,0),=(0,1,2),=(0,-2,0). 设平面BMN的法向量n=(x,y,z),由得令x=2,得n=(2,-2,1)为平面BMN的一个法向量.设直线AB与平面BMN所成角为θ,则sinθ=|cos〈n,〉|===,所以直线AB与平面BMN所成角的正弦值为. 选条件②:取AB的中点H,连接HM,HN,因为M,N,H分别为A1B1,AC,AB的中点,所以B1B∥MH,CB∥NH,而CB⊥BB1,故NH⊥MH.又因为AB=BC=2,所以NH=BH=1.在△MHB和△MHN中,BM=MN,NH=BH,公共边MH,那么△MHB≌△MHN,因此∠MHN=∠MHB=90°,即MH⊥AB,故B1B⊥AB.在三棱柱ABC-A1B1C1中,BA,BC,BB1两两垂直,故以B为坐标原点,分别以BC,BA,BB1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系, 因为AB=BC=BB1=2,则B(0,0,0),N(1,1,0),M(0,1,2),A(0,2,0),所以=(1,1,0),=(0,1,2),=(0,-2,0).设平面BMN的法向量n=(x,y,z),由得令x=2,得n=(2,-2,1)为平面BMN的一个法向量.设直线AB与平面BMN所成角为θ,则sinθ=|cos〈n,〉|===,所以直线AB与平面BMN所成角的正弦值为. 名师点评利用空间向量求线面角的解题步骤 [跟进训练]2.(2022·浙江高考)如图,已知ABCD和CDEF都是直角梯形,AB∥DC,DC∥EF,AB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角F-DC-B的平面角为60°.设M,N分别为AE,BC的中点.(1)证明:FN⊥AD;(2)求直线BM与平面ADE所成角的正弦值.[解](1)证明:易求得CF=2,BC=2.∵FC⊥DC,BC⊥DC,∴∠BCF为二面角F-DC-B的平面角,∴∠BCF=60°,∴△BCF为等边三角形.∵N为BC的中点,∴FN⊥BC.又∵DC⊥平面BCF,∴DC⊥FN,BC∩DC=C,∴FN⊥平面BCD,∴FN⊥AD. (2)如图建系,则B(0,,0),A(5,,0),D(3,-,0),E(1,0,3),M,∴==(-2,-2,0),=(-2,,3).设平面ADE的法向量n=(x0,y0,z0),BM与平面ADE所成角为θ,∴⇒取x0=,则y0=-1,z0=,即n=(,-1,)是平面ADE的一个法向量.∴sinθ=|cos〈,n〉|===.∴直线BM与平面ADE所成角的正弦值为. 考点三 平面与平面的夹角[典例3](12分)(2023·新高考Ⅰ卷)如图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4.点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P-A2C2-D2为150°时,求B2P. [解](1)证明:以点C为坐标原点,CD,CB,CC1所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,则C(0,0,0),C2(0,0,3),B2(0,2,2),D2(2,0,2),A2(2,2,1).············2分∴=(0,-2,1),=(0,-2,1).·············3分∴∥.··························4分又B2C2,A2D2不在同一条直线上,→············5分∴B2C2∥A2D2.··························6分 (2)设P(0,2,λ)(0≤λ≤4),→则=(-2,-2,2),=(0,-2,3-λ),=(-2,0,1),·7分设平面PA2C2的法向量n=(x,y,z),则令z=2,得y=3-λ,x=λ-1,→∴n=(λ-1,3-λ,2)为平面PA2C2的一个法向量.··········8分设平面A2C2D2的法向量m=(a,b,c),则 令a=1,得b=1,c=2,∴m=(1,1,2)为平面A2C2D2的一个法向量,············9分|cos〈n,m〉|=→==|cos150°|=,化简可得λ2-4λ+3=0,·····················10分解得λ=1或λ=3,∴P(0,2,1)或P(0,2,3),···················11分∴B2P=1.···························12分 名师点评利用空间向量求平面与平面夹角的解题步骤 [跟进训练]3.(2023·新高考Ⅱ卷)如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC=60°,E为BC的中点.(1)证明:BC⊥DA;(2)点F满足=,求二面角D-AB-F的正弦值. [解](1)证明:如图,连接DE,AE,因为DC=DB,且E为BC的中点,所以DE⊥BC.因为∠ADB=∠ADC=60°,DA=DA,DC=DB,所以△ADB≌△ADC(SAS).可得AC=AB,故AE⊥BC.因为DE∩AE=E,DE,AE⊂平面ADE,所以BC⊥平面ADE.又DA⊂平面ADE,所以BC⊥DA.(2)由(1)知,DE⊥BC,AE⊥BC.不妨设DA=DB=DC=2,因为∠ADB=∠ADC=60°,所以AB=AC=2.由题可知△DBC为等腰直角三角形,故DE=EB=EC=.因为AE⊥BC,所以AE==. 在△ADE中,AE2+ED2=AD2,所以AE⊥ED.以E为坐标原点,ED所在直线为x轴,EB所在直线为y轴,EA所在直线为z轴,建立空间直角坐标系,如图,则D(,0,0),B(0,,0),A(0,0,),=(-,0,),=(0,-).设F(xF,yF,zF),因为=,所以(xF,yF,zF)=(-,0,),可得F(-,0,),所以=(,0,0).设平面DAB的法向量为m=(x1,y1,z1),则即取x1=1,则y1=z1=1,m=(1,1,1)为平面DAB的一个法向量. 设平面ABF的法向量为n=(x2,y2,z2),则即得x2=0,取y2=1,则z2=1,n=(0,1,1)为平面ABF的一个法向量,所以cos〈m,n〉===.记二面角D-AB-F的大小为θ,则sinθ===,故二面角D-AB-F的正弦值为. 点击页面进入…(WORD版)巩固课堂所学·激发学习思维夯实基础知识·熟悉命题方式自我检测提能·及时矫正不足本节课掌握了哪些考点?本节课还有什么疑问点?课后训练学习反思课时小结课时分层作业(四十八)向量法求空间角 THANKS

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-10-03 11:20:02 页数:35
价格:¥1 大小:10.87 MB
文章作者:180****8757

推荐特供

MORE