首页

2024年高考数学一轮复习: 函数与基本初等函数 第08讲 函数模型及其应用(练习)(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/16

2/16

剩余14页未读,查看更多内容需下载

第08讲函数模型及其应用(模拟精练+真题演练)1.(2023·河南郑州·洛宁县第一高级中学校联考模拟预测)水雾喷头布置的基本原则是:保护对象的水雾喷头数量应根据设计喷雾强度、保护面积和水雾喷头特性,按水雾喷头流量q(单位:L/min)计算公式为和保护对象的水雾喷头数量N计算公式为计算确定,其中P为水雾喷头的工作压力(单位:MPa),K为水雾喷头的流量系数(其值由喷头制造商提供),S为保护对象的保护面积,W为保护对象的设计喷雾强度(单位:L/min·m2),水雾喷头的布置应使水雾直接喷射和完全覆盖保护对象,如不能满足要求时应增加水雾喷头的数量.当水雾喷头的工作压力P为0.35MPa,水雾喷头的流量系数K为24.96,保护对象的保护面积S为14m2,保护对象的设计喷雾强度W为20L/min·m2时,保护对象的水雾喷头的数量N约为(    )(参考数据:)A.4个B.5个C.6个D.7个【答案】C【解析】由水雾喷头的工作压力P为0.35MPa,水雾喷头的流量系数K为24.96,得,再由保护对象的保护面积S为14m2,保护对象的设计喷雾强度W为20L/min·m2,得,即保护对象的水雾喷头的数量N约为个.故选:C.2.(2023·浙江·校联考二模)提丢斯一波得定则,简称“波得定律”,是表示各行星与太阳平均距离的一种经验规则.它是在1766年德国的一位中学教师戴维·提丢斯发现的.后来被柏林天文台的台长波得归纳成了一个如下经验公式来表示:记太阳到地球的平均距离为1,若某行星的编号为n,则该行星到太阳的平均距离表示为,那么编号为9的行星用该公式推得的平均距离位于(    )行星金星地球火星谷神星木星土星天王星海王星编号12345678公式推得值0.711.62.85.21019.638.8实测值0.7211.522.95.29.5419.1830.06A.B.C.D.【答案】D 【解析】由表格可得,故选:D3.(2023·四川内江·四川省内江市第六中学校考模拟预测)英国物理学家和数学家牛顿曾提出物体在常温环境下温度变化的冷却模型.如果物体的初始温度是,环境温度是,则经过物体的温度将满足,其中k是一个随着物体与空气的接触情况而定的正常数.现有的物体,若放在的空气中冷却,经过物体的温度为,则若使物体的温度为,需要冷却(    )A.B.C.D.【答案】C【解析】由题意得,,,代入,,即,所以,所以,由题意得,,代入,即,得,即,解得,即若使物体的温度为,需要冷却,故选:C.4.(2023·福建福州·统考模拟预测)为落实党的二十大提出的“加快建设农业强国,扎实推动乡村振兴”的目标,银行拟在乡村开展小额贷款业务.根据调查的数据,建立了实际还款比例关于贷款人的年收入(单位:万元)的Logistic,模型:,已知当贷款人的年收入为8万元时,其实际还款比例为50%.若银行希望实际还款比例为40%,则贷款人的年收入为(    )(精确到0.01万元,参考数据:,)A.4.65万元B.5.63万元C.6.40万元D.10.00万元【答案】A【解析】由题意,即,得,所以. 令,得,得,得得.故选:A.5.(2023·江苏南通·统考模拟预测)为了贯彻落实《中共中央国务院关于深入打好污染防治攻坚战的意见》,某造纸企业的污染治理科研小组积极探索改良工艺,使排放的污水中含有的污染物数量逐渐减少.已知改良工艺前所排放废水中含有的污染物数量为,首次改良工艺后排放的废水中含有的污染物数量为,第n次改良工艺后排放的废水中含有的污染物数量满足函数模型,其中为改良工艺前所排放的废水中含有的污染物数量,为首次改良工艺后所排放的废水中含有的污染物数量,n为改良工艺的次数.假设废水中含有的污染物数量不超过时符合废水排放标准,若该企业排放的废水符合排放标准,则改良工艺的次数最少要(    )(参考数据:,)A.14次B.15次C.16次D.17次【答案】C【解析】依题意,,,当时,,即,可得,于是,由,得,即,则,又,因此,所以若该企业排放的废水符合排放标准,则改良工艺的次数最少要16次.故选:C6.(2023·江西·校联考二模)草莓中有多种氨基酸、微量元素、维生素,能够调节免疫功能,增强机体免疫力.草莓味甘、性凉,有润肺生津,健脾养胃等功效,受到众人的喜爱.根据草莓单果的重量,可将其从小到大依次分为个等级,其等级()与其对应等级的市场销售单价单位:元千克近似满足函数关系式.若花同样的钱买到的级草莓比级草莓多倍,且级草莓的市场销售单价为元千克,则级草莓的市场销售单价最接近(   )(参考数据:,)A.元千克B.元千克C.元千克D.元千克【答案】C 【解析】由题可知,由则.故选:C.7.(2023·重庆·统考模拟预测)中华人民共和国国家标准《居室空气中甲醛的卫生标准》规定:居室空气中甲醛的最高容许浓度为:一类建筑,二类建筑.二类建筑室内甲醛浓度小于等于为安全范围,已知某学校教学楼(二类建筑)施工过程中使用了甲醛喷剂,处于良好的通风环境下时,竣工2周后室内甲醛浓度为,4周后室内甲醛浓度为,且室内甲醛浓度(单位:)与竣工后保持良好通风的时间(单位:周)近似满足函数关系式,则该教学楼竣工后的甲醛浓度若要达到安全开放标准,至少需要放置的时间为(    )A.5周B.6周C.7周D.8周【答案】B【解析】由题意可得:,解得,所以,令,整理得,因为,故,则,所以至少需要放置6周.故选:B.8.(2023·山西朔州·怀仁市第一中学校校考模拟预测)为研究每平方米平均建筑费用与楼层数的关系,某开发商收集了一栋住宅楼在建筑过程中,建筑费用的相关信息,将总楼层数与每平米平均建筑成本(单位:万元)的数据整理成如图所示的散点图:则下面四个回归方程类型中最适宜作为每平米平均建筑费用和楼层数的回归方程类型的是(    )A.B.C.D.【答案】C 【解析】观察散点图,可知是一个单调递减的曲线图,结合选项函数的类型可得回归方程类型是反比例类型,故C正确.故选:C.9.(多选题)(2023·辽宁大连·统考三模)甲乙两队进行比赛,若双方实力随时间的变化遵循兰彻斯特模型:其中正实数分别为甲、乙两方初始实力,为比赛时间;分别为甲、乙两方时刻的实力;正实数分别为甲对乙、乙对甲的比赛效果系数.规定当甲、乙两方任何一方实力为0时比赛结束,另一方获得比赛胜利,并记比赛持续时长为.则下列结论正确的是(    )A.若且,则B.若且,则C.若,则甲比赛胜利D.若,则甲比赛胜利【答案】ABD【解析】对选项A:若且,则,所以,由可得,正确;对选项B:当时根据A中的结论可知,所以乙方实力先为0,即,化简可得,即,两边同时取对数可得,即,即,正确;对选项C:,若甲方获得比赛胜利,则甲方可比赛时间大于乙方即可,设甲方实力为0时所用时间为,乙方实力为0时所用时间为, 即,可得,同理可得,即,解得,又因为都为正实数,所以可得,甲方获得比赛胜利,错误;对选项D:根据C知正确;故答案为:.10.(多选题)(2023·全国·高三专题练习)如图所示为某池塘中野生水葫芦的面积与时间的函数关系的图象,假设其函数关系为指数函数,现给出下列说法,其中正确的说法有(    )A.野生水葫芦的面积每月增长量相等B.野生水葫芦从蔓延到历时超过1个月C.设野生水葫芦蔓延到,,所需的时间分别为,,,则有D.野生水葫芦在第1个月到第3个月之间蔓延的平均速度等于在第2个月到第4个月之间蔓延的平均速度【答案】BC【解析】由图可知野生水葫芦第一个月增长面积为,第二个月增长面积为,A错误;由图可知野生水葫芦从蔓延到历时超过1个月,B正确;野生水葫芦的面积与时间的函数关系为,,,,,所以,C正确;野生水葫芦在第1个月到第3个月之间蔓延的平均速度为野生水葫芦在第2个月到第4个月之间蔓延的平均速度为,D错误.故选:BC 11.(多选题)(2023·全国·高三专题练习)牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是(单位:℃),环境温度是(单位:℃),其中、则经过t分钟后物体的温度将满足(且).现有一杯的热红茶置于的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是(    )(参考数值)A.若,则B.若,则红茶下降到所需时间大约为6分钟C.5分钟后物体的温度是,k约为0.22D.红茶温度从下降到所需的时间比从下降到所需的时间多【答案】AC【解析】由题知,A选项:若,即,所以,则,A正确;B选项:若,则,则,两边同时取对数得,所以,所以红茶下降到所需时间大约为7分钟,B错误;C选项:5分钟后物体的温度是,即,则,得,所以,故C正确;D选项:为指数型函数,如图,可得红茶温度从下降到所需的时间()比从下降到所需的时间()少,故D错误.故选:AC.12.(多选题)(2023·全国·高三专题练习)某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常,排气4分钟后测得车库内的一氧化碳浓度为64ppm,继续排气4分钟后又测得浓度为32ppm.由检验知该地下车库一氧化碳浓度y(单位:ppm)与排气时间t (单位:分)之间满足函数关系y=f(t),其中(R为常数).若空气中一氧化碳浓度不高于0.5ppm,人就可以安全进入车库了,则下列说法正确的是(  )A.B.C.排气12分钟后,人可以安全进入车库D.排气32分钟后,人可以安全进入车库【答案】BD【解析】因为,所以符合要求.又解得,a=128,故B正确,A错误.,当时,即,得,所以,即,所以排气32分钟后,人可以安全进入车库,故D正确,C错误,故选:BD.13.(2023·北京朝阳·统考一模)某军区红、蓝两方进行战斗演习,假设双方兵力(战斗单位数)随时间的变化遵循兰彻斯特模型:,其中正实数,分别为红、蓝两方初始兵力,t为战斗时间;,分别为红、蓝两方t时刻的兵力;正实数a,b分别为红方对蓝方、蓝方对红方的战斗效果系数;和分别为双曲余弦函数和双曲正弦函数.规定当红、蓝两方任何一方兵力为0时战斗演习结束,另一方获得战斗演习胜利,并记战斗持续时长为T.给出下列四个结论:①若且,则;②若且,则; ③若,则红方获得战斗演习胜利;④若,则红方获得战斗演习胜利.其中所有正确结论的序号是________.【答案】①②④【解析】对于①,若且,则,即,所以,由可得,即①正确;对于②,当时根据①中的结论可知,所以蓝方兵力先为0,即,化简可得,即,两边同时取对数可得,即,所以战斗持续时长为,所以②正确;对于③,若红方获得战斗演习胜利,则红方可战斗时间大于蓝方即可,设红方兵力为0时所用时间为,蓝方兵力为0时所用时间为,即,可得同理可得即,解得又因为都为正实数,所以可得,红方获得战斗演习胜利; 所以可得③错误,④正确.故答案为:①②④.14.(2023·陕西西安·统考一模)我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长度为1的线段,第1次操作,将该线段三等分,去掉中间一段,留下两段;第2次操作,将留下的两段分别三等分,各去掉中间一段,留下四段;按照这种规律一直操作下去.若经过次这样的操作后,去掉的所有线段的长度总和大于,则的最小值为__________.(参考数据:)【答案】12【解析】设每次操作留下的长度为,则,,且每次操作留下的长度均为上一次操作留下长度的,所以为等比数列,公比为,首项为,故,所以经过次这样的操作后,去掉的所有线段长度总和为,故,即,两边取对数得:,因为,所以,则n的最小值为12.故答案为:1215.(2023·上海长宁·统考一模)研究发现,某昆虫释放信息素t秒后,在距释放处x米的地方测得的信息素浓度y满足,其中为非零常数;已知释放1秒后,在距释放处2米的地方测得信息素浓度为m,则释放信息素4秒后,距释放处的___________米的位置,信息素浓度为.【答案】4【解析】因为释放1秒后,在距释放处2米的地方测得信息素浓度为m,所以,所以,即当时,, 整理得即,所以,因为,所以.故答案为:4.16.(2023·全国·长郡中学校联考模拟预测)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为_________.【答案】【解析】由,得,由,得,将代入,得,有,所以,则,所以.故答案为:.1.(2015·四川·高考真题)某食品的保鲜时间(单位:小时)与储藏温度(单位:℃)满足函数关系(为自然对数的底数,为常数).若该食品在℃的保鲜时间是小时,在℃ 的保鲜时间是小时,则该食品在℃的保鲜时间是A.16小时B.20小时C.24小时D.21小时【答案】C【详解】,两式相除得,解得,那么,当时,故选C.考点:函数的应用2.(2014·湖南·高考真题)某市生产总值连续两年持续增加.第一年的增长率为,第二年的增长率为,则该市这两年生产总值的年平均增长率为A.B.C.D.【答案】D【详解】设这两年年平均增长率为,因此解得.考点:函数模型的应用.3.(2015·北京·高考真题)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)年月日年月日注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每千米平均耗油量为()A.升B.升C.升D.升【答案】B【详解】因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量升.而这段时间内行驶的里程数千米.所以这段时间内,该车每100千米平均耗油量为升,故选B.考点:平均变化率. 4.(2011·北京·高考真题)根据统计,一名工作组装第4件某产品所用的时间(单位:分钟)为(A,C为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么C和A的值分别是A.75,25B.75,16C.60,25D.60,16【答案】D【详解】由条件可知,时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即,,选D.5.(2014·北京·高考真题)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【答案】B【详解】由图形可知,三点都在函数的图象上,所以,解得,所以,因为,所以当时,取最大值,故此时的t=分钟为最佳加工时间,故选B.考点:本小题以实际应用为背景,主要考查二次函数的解析式的求解、二次函数的最值等基础知识,考查同学们分析问题与解决问题的能力.6.(2011·湖北·高考真题)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t (单位:年)满足函数关系:,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是(太贝克/年),则M(60)=(  )A.5太贝克B.75太贝克C.150太贝克D.150太贝克【答案】D【详解】因为,所以.因为t=30时,铯137的含量的变化率是,所以,解得,所以.故选D.7.(2015·四川·高考真题)某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.【答案】24【解析】由题意得:,所以时,.考点:函数及其应用.8.(2014·北京·高考真题)顾客请一位工艺师把、两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工精加工原料原料则最短交货期为工作日.【答案】42 【解析】因为第一件进行粗加工时,工艺师什么都不能做,所以徒弟完成原料B的6小时后,师傅开始工作,在师傅后面的36小时的精加工内,徒弟也同时完成了原料A的粗加工.所以前后共计=42小时.考点:本小题以实际问题为背景,主要考查逻辑推理能力,考查分析问题与解决问题的能力.9.(2019·北京·高考真题)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.【答案】130.15.【解析】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-09-08 09:40:01 页数:16
价格:¥2 大小:802.70 KB
文章作者:180****8757

推荐特供

MORE