首页

福建省 2024届高三下学期4月份质量检测数学答案解析

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/12

2/12

剩余10页未读,查看更多内容需下载

福建省安溪第八中学2024届高三年4月份质量检测数学试题参考答案(考试时间:120分钟试卷满分:150分)第I卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。1.某市物价部门对某商品在5家商场的售价(元)及其一天的销售量(件)进行调查,得到五对数据(),经过分析、计算,得,,,之间的经验回归方程是:,则相应于点的残差为(    )A.B.C.D.【答案】A【解析】因为,,所以样本点的中心为,又因为经验回归直线过样本点的中心,所以,所以,所以经验回归方程是:,当时,,所以残差为.故选:A.2.在平面四边形中,,分别为,的中点.若,,且,则(    )A.B.C.D.【答案】B【解析】连接,,如图,可知.由,即,可得.从而,,所以.故选:B.3.已知各项均为正数的等比数列中,若,则=(    )A.2B.3C.4D.9【答案】C 【解析】由题意得,由等比中项性质得,故.故选:C4.已知表示两条直线,表示平面,下列命题中正确的有(    )①若,且,则;②若相交且都在平面外,,则;③若,则;④若,且,则.A.1个B.2个C.3个D.4个【答案】A【解析】对于①,若,且,则或相交,故①错误;对于③和④,与也可能相交,均错误;对于②,设相交确定平面,根据线面平行的判定定理知,根据平行平面的传递性得知.故选:A.5.【答案】C【解析】若将体育书分给甲,当剩余4本书恰好分给乙、丙时,此时的分配方法有种,当剩余4本书恰好分给甲、乙、丙三人时,此时的分配方法有种.综上,将体育书分给甲,不同的分配方法数是.同理,将体育书分给乙,不同的分配方法数也是50.故不同的分配方法数是.故选:C6.若直线与曲线相切,则的取值范围为(    )A.B.C.D.【答案】C【解析】设切点为,因为,所以.又因为切点在直线上,所以,解得,所以. 令,则,所以在区间上,单调递减,在区间上单调递增,所以,故的取值范围为.故选:C7.已知,,则等于(    )A.B.C.D.【答案】D【解析】因为,所以.两边除以,得.故选:D.8.古希腊哲学家、百科式科学家阿基米德最早采用分割法求得椭圆的面积为椭圆的长半轴长和短半轴长乘积的倍,这种方法已具有积分计算的雏形.已知椭圆的面积为,离心率为,,是椭圆的两个焦点,为椭圆上的动点,则下列结论正确的是(   )①椭圆的标准方程可以为    ②若,则③存在点,使得    ④的最小值为A.①③B.②④C.②③D.①④【答案】D【解析】对于①:由,解得,则椭圆的标准方程为,故①正确;对于②:由定义可知,由余弦定理可得:,整理得,则,故②错误; 对于③:设,,,由于,,则不存在点,使得,故③错误;对于④:,当且仅当,即时,等号成立,故④正确;故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则(    )A.函数为偶函数B.曲线的对称轴为C.在区间单调递增D.的最小值为【答案】AC【解析】,即,对于A,,易知为偶函数,所以A正确;对于B,对称轴为,故B错误;对于C,,单调递减,则 单调递增,故C正确;对于D,,则,所以,故D错误;故选:AC10.已知是的共轭复数,则(    )A.若,则B.若为纯虚数,则C.若,则D.若,则集合所构成区域的面积为【答案】AB【解析】,所以,故A正确;由为纯虚数,可设,所以,因为且,所以,故B正确;由,得,因为与均为虚数,所以二者之间不能比较大小,故C错误;设复数,所以由得,所以集合所构成区域是以为圆心为半径的圆,所以面积为,故D错误.故选:AB.11.已知函数的定义域为R,满足,且,则(    )A.B.为奇函数C.D.【答案】ACD【解析】对A:令,,则,因为,所以,故A正确;对B:令得:,结合可得,所以为偶函数,故B错误; 对C:令可得:,因为,所以,进一步可得:,又,,故,故,依次有,所以,故C正确;对D:令可得:;用代替,得:,结合C的结果,可得:,故D正确.故选:ACD.第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,,若,则实数.【答案】1【解析】由题知,若,则或,当时,方程无解;当时,,解得:,此时,,符合题意,所以.故答案为:1.13.展开式中的常数项为.【答案】【分析】表示个相乘,再结合组合即可得解.【详解】表示个相乘,则常数项,应为个,个,个,个相乘, 所以展开式中的常数项为.故答案为:.14.已知圆,过点的直线与圆交于两点,则的最小值为.【答案】4【分析】根据表示,两点到直线的距离之和的倍,结合,两点到直线的距离之和等于线段的中点到直线距离的2倍,根据题意分析可得中点的轨迹是以为直径的圆,从而求出到直线距离的最小值的倍即可得到答案.【详解】由题可得:,所以表示,两点到直线距离之和的倍,根据题意作出图形如下:如图,设,的中点为,且,,在直线的投影分别为,,,圆心到直线的距离,所以直线与圆相离,易得,即,所以点在以为直径的圆上,其圆心为,半径为,由图可得:由于到直线的距离,所以,即的最小值为.故答案为:4四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数. (1)若,求曲线在点处的切线;(2)讨论的单调性;【解析】(1)当时,函数,则,切点坐标为,…………………2分,则曲线在点处的切线斜率为,………………………………4分所求切线方程为,即.………………………………………………………………6分(2),函数定义域为R,,……………………………………………………………7分①,解得或,解得,所以在和上单调递增,在上单调递减,……………………………………9分②,解得或,解得,所以在和上单调递增,在上单调递减,……………………………………11分③,恒成立,在上单调递增.综上,当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增.…………………………………………………………………13分16.(15分)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有个红球,则分得个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.【解析】(1)记“一学生既分得月饼又要表演节目”为事件A,可知有两种可能:“2个红球1个黄球”和“1个黑球,1个红球,1个黄球”,………………………………3分所以.………………………………………………………………………………6分 (2)由题意可知的可能取值为:0,1,2,3,则有:,………………………………………………………………10分,………………………………………………………………12分可得的分布列为0123所以.………………………………………………………………15分17.(15分)如图所示,在梯形中,,,.四边形为矩形,且平面.(1)求证:平面;(2)若直线与所成角的正切值为,点在线段上运动,当点在什么位置时,平面与平面所成的锐二面角的余弦值为.【解析】(1)因为四边形为梯形,,,,所以,,则,即又因为平面,面ABCD,所以.因为、都在平面内,,所以面.………………………………………………………………………………………………6分(2)取中点,连结,,由,知,由(1)知,共面且不共线,所以,故直线与所成角为. 由平面,面ABCD,所以,又,在面内,且,故面,所以面,面,则,在中,,,所以,在,易得,…………………………………………………………………………8分以为坐标原点,分别以、、所在直线为轴、轴、轴建立空间直角坐标系,如图所示,则,,,,,设为平面的法向量,则,即,取,则.所以…………………………………………………………………………………………11分由题可知,是平面的一个法向量,所以.……………………………………13分因为,解得或(舍去).…………………………………………………………15分当点为线段的靠近的三等分点时,平面与平面所成的锐二面角的余弦值为.18.(本小题满分17分)已知抛物线:,直线,且点在抛物线上.(1)若点在直线上,且四点构成菱形,求直线的方程;(2)若点为抛物线和直线的交点(位于轴下方),点在直线上,且四点构成矩形,求直线的斜率.【解】(1)由题意知,设直线.联立得,…………………………………………………………………………2分则,,…………………………………………4分则的中点在直线上, 代入可解得,,满足直线与抛物线有两个交点,所以直线的方程为,即.…………………………………………………………7分  (2)当直线的斜率为或不存在时,均不满足题意.由得或(舍去),故.………………………………………………………9分方法一:当直线的斜率存在且不为时,设直线.……………………………11分联立得,所以.……………………………………………13分所以.同理得.由的中点在直线上,得,即.令,则,解得或.………………………………………………………15分当时,直线的斜率;………………………………16分当时,直线的斜率不存在.所以直线的斜率为.…………………………………………17分19.(17分)记函数的导函数为,的导函数为,设是的定义域的子集,若在区间上,则称在上是“凸函数”.已知函数.(1)若在上为“凸函数”,求的取值范围;(2)若,判断在区间上的零点个数. (1)根据“凸函数”定义对函数求导,由不等式在恒成立即可求得的取值范围;(2)易知,由导函数求得其在上的单调性,利用零点存在定理可知零点个数为1个.解:(1)由可得其定义域为,且,所以,…2分若在上为“凸函数”可得在恒成立,当时,显然符合题意;………………………………………………………………………………4分当时,需满足,可得;综上可得的取值范围为;………………………………………………………………………7分(2)若,可得,所以,………………………………………8分令,则;易知在区间上恒成立,……………………………………………………10分因此可得在上单调递减;……………………………………………12分显然,;……………………13分根据零点存在定理可得存在使得,因此可知当时,,即在上为单调递增;……………………………14分当时,,即在上为单调递减;………………………………………15分又,显然在上不存在零点;……………………………………16分而,结合单调性可得在上存在一个零点;综上可知,在区间上仅有1个零点.……………………………………………17分

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2024-05-14 02:40:02 页数:12
价格:¥5 大小:1.02 MB
文章作者:180****8757

推荐特供

MORE