首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
高考数学重难点题型归纳第4讲 复合二次型和镶嵌函数零点(解析版)
高考数学重难点题型归纳第4讲 复合二次型和镶嵌函数零点(解析版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/50
2
/50
3
/50
4
/50
5
/50
6
/50
7
/50
8
/50
9
/50
10
/50
剩余40页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第4讲复合二次型和镶嵌函数的零点11类【题型一】一元二次复合型基础型:可因式分解【典例分析】�已知函数��=,若关于�的方程��2+���+�−1=0有且仅有三个不同的实数解,则实数�的取ln�值范围是()A.−2e,1−eB.1−e,0C.−∞,1−eD.1−e,2e【答案】C【分析】首先利用导函数求�(�)的单调性,根据其单调性作出�(�)的大致图像,然后结合已知条件将方程解的问题转换成交点问题即可求解.�'�=ln�−1''【详解】因为��=,所以�2,当�∈0,1∪1,e,��<0;当�∈e,+∞,��>0,ln�ln�所以��在0,1和1,e单调递减,在e,+∞单调递增,且当�→0时,��→0,�e=e,故��的大致图象如图所示<br /><b.�≥−��11c.�<−d.�≥��【答案】cln�−1【分析】求导得�'(�)=2,�∈(0,1)∪(1,+∞),分析导数的正负,�(�)单调性,最值,作出�(�)的(ln�)22−�2+�2−1−�2+�2−1图象,令�=�(�),�<0或�≥�,方程[�(�)]+��(�)−�+1=0,转化为�=,令�(�)=,��−1−1−1�<0或�≥�,分析�(�)单调性,作出�(�)图象,分两种情况:当�<、�=、�><t2<2,即有f(x)=0有一根;231<f(x)<2时,t2=f(x)有3个不等实根,综上可得f(x)=0的实根个数为4,即函数f(x)=f[f(x)]−2f(x)−2的零点个数是4.本题选择a选项.1,x02.已知函数f(x)x,则方程ef(f(x))f(x)10(e是自然对数的底数)的实根个数为xlnx,x0__________.【答案】6【分析】1t1t令tf(x),原方程可得ft,利用数形结合判断yft与y交点个数及交点横坐标的范围,ee再根据横坐标判断tf(x)时交点的个数,即为实根的个数.【详解】1t令tf(x),方程为:eftt10,即ft,e1tyft与y的性质如下:e111、yft:在(,0)上单调递增,值域为(0,);(0,)上递增,(,1]上递减,ee111值域为[0,]且f()、f(1)0;(1,)上单调递增,值域为(0,);eee1t2、y:过定点(1,0),定义域上单调递减
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2024年新高考数学一轮复习题型归纳与达标检测第8讲二次函数与幂函数(讲)(Word版附解析)
2024年新高考数学一轮复习题型归纳与达标检测第19讲导数的应用——利用导数研究函数零点问题(讲)(Word版附解析)
专题2-3 零点与复合嵌套函数(解析版)
高考数学方法技巧第8讲 函数零点问题(解析版)
高考数学重难点题型归纳第1讲 幂指对三角函数值比较大小(解析版)
高考数学重难点题型归纳第1讲 幂指对三角函数值比较大小(原卷版)
高考数学重难点题型归纳第2讲 中心对称、轴对称和周期性(解析版)
高考数学重难点题型归纳第2讲 中心对称、轴对称和周期性(原卷版)
高考数学重难点题型归纳第3讲 零点(解析版)
高考数学重难点题型归纳第3讲 零点(原卷版)
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2024-05-05 23:00:01
页数:50
价格:¥3
大小:2.72 MB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划