首页

2024新高考新试卷结构数列的通项公式的9种题型总结(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/13

2/13

3/13

4/13

5/13

6/13

7/13

8/13

9/13

10/13

剩余3页未读,查看更多内容需下载

2024新高考新试卷结构数列的通项公式的9种题型总结题型解密考点一:已知Sn=fn,求ana1,n=1利用Sn=,注意一定要验证当n=1时是否成立Sn−Sn−1,n≥2【精选例题】n+11已知Sn为数列an的前n项和,且Sn=2-1,则数列an的通项公式为()3,n=1nn-1n+1A.an=2B.an=nC.an=2D.an=22,n≥2【答案】Bnn+1nn1+1【详解】当n≥2时,Sn-1=2-1,an=Sn-Sn-1=2-1-2+1=2;当n=1时,a1=S1=2-1=3,不符3,n=1n合an=2,则an=.故选:B.2n,n≥2n2定义为n个正数p1,p2,p3,⋅⋅⋅,pn的“均倒数”,若已知数列an的前n项的“均倒数”为p1+p2+p3+⋅⋅⋅+pn1,则a10等于()5nA.85B.90C.95D.100【答案】C1n1【详解】因为数列an的前n项的“均倒数”为,所以=⇒a1+a2+a3+⋅⋅⋅+an=5na1+a2+a3+⋅⋅⋅+an5n25n,22于是有a1+a2+a3+⋅⋅⋅+a10=5×10,a1+a2+a3+⋅⋅⋅+a9=5×9,两式相减,得a10=5×(100-81)=95,故选:Cn-1a1+2a2+⋯+2ann3(多选题)定义Hn=为数列an的“优值”.已知某数列an的“优值”Hn=2,前nn项和为Sn,下列关于数列an的描述正确的有()A.数列an为等差数列B.数列an为递增数列S20222025C.=D.S2,S4,S6成等差数列20222【答案】ABCn-1a1+2a2+⋯+2annn-1n【详解】由已知可得Hn==2,所以a1+2a2+⋯+2an=n⋅2,①所以n≥2时,a1nn-2n-1n-1nn-1n-1+2a2+⋯+2an-1=n-1⋅2,②得n≥2时,2an=n⋅2-n-1⋅2=n+1⋅2,即n≥2时,an=n+1,当n=1时,由①知a1=2,满足an=n+1.所以数列an是首项为2,公差为1的等差数nn+3Snn+3S20222025列,故A正确,B正确,所以Sn=,所以=,故=,故C正确.S2=5,S4=2n22022214,S6=27,S2,S4,S6不是等差数列,故D错误,故选:ABC.1114设数列an满足a1+2a2+2a3+⋅⋅⋅+n-1an=n+1,则an的前n项和()221 nnnn+1A.2-1B.2+1C.2D.2-1【答案】C1111【详解】解:当n=1时,a1=2,当n≥2时,由a1+2a2+2a3+⋅⋅⋅+n-2an-1+n-1an=n+1得2221111n-12,n=1a1+2a2+2a3+⋅⋅⋅+n-2an-1=n,两式相减得,n-1an=1,即an=2,综上,an=n-12222,n≥2n-1n-121-2n所以an的前n项和为2+2+4+8+⋯+2=2+=2,故选:C.1-2【跟踪训练】n1无穷数列an的前n项和为Sn,满足Sn=2,则下列结论中正确的有()A.an为等比数列B.an为递增数列C.an中存在三项成等差数列D.an中偶数项成等比数列【答案】Dnnn-1n-1【详解】解:无穷数列an的前n项和为Sn,满足Sn=2∴n≥2,an=Sn-Sn-1=2-2=2,当n=1时,12,n=1,a1=S1=2=2,不符合上式,∴an=n-1所以an不是等比数列,故A错误;又a1=a2=2,所以2,n≥2,an不是递增数列,故B错误;假设数列an中存在三项ar,am,as成等差数列,由于a1=a2=2,则r,m,s∈*m-1r-1s-1mr-1s-1r-m-1s-m-1N,2≤r<m<s,所以得:2am=ar+as⇒2×2=2+2∴2=2+2,则∴1=2+2,又ss-m-1r-m-1r-m-1s-m-1-m-1≥0⇒2≥1且2>0恒成立,故式子1=2+2无解,an中找不到三项成等差数a2n+12n-1*2(n+1)2列,故C错误;∴a2n=2(n∈N),∴a=2n-1=4∴a2n是等比数列,即an中偶数项成等比数n2列,故D正确.故选:D.a1+2a2+3a3+⋯+nan2对于数列an,定义Hn=为an的“伴生数列”,已知某数列an的“伴生数n2*列”为Hn=(n+1),则an=;记数列an-kn的前n项和为Sn,若对任意n∈N,Sn≤S6恒成立,则实数k的取值范围为.2219【答案】3n+1;≤k≤.762a1+2a2+3a3+⋯+nan2【详解】因为Hn=(n+1)=,所以n⋅(n+1)=a1+2a2+3a3+⋯+nan①,所以当n=n221时,a1=4,当n≥2时,(n-1)⋅n=a1+2a2+3a3+⋯+(n-1)an-1②,①-②:3n+n=nan,所以an=3n*+1,综上:an=3n+1,n∈N,*令bn=an-kn=(3-k)n+1,则bn+1-bn=3-k,可知{bn}为等差数列,又因为对任意n∈N,Sn≤S6恒成S6-S5=b6≥0,b6=3-k×6+1=19-6k≥0,2219立,所以则有解得≤k≤.故答案为:3n+S7-S6=b7≤0,b7=3-k×7+1=22-7k≤0,7622191;≤k≤76考点二:叠加法(累加法)求通项*若数列an满足an+1−an=f(n)(n∈N),则称数列an为“变差数列”,求变差数列an的通项时,利用恒等式an=a1+(a2−a1)+(a3−a2)+⋅⋅⋅+(an−an−1)=a1+f(1)+f(2)+f(3)+⋅⋅⋅+f(n−1)(n≥2)求通项公式的方法称为累加法。【精选例题】2 *11111数列an满足a1=1,且对任意的m,n∈N都有am+n=am+an+mn,则+++⋯+=a1a2a3a201()201400200199A.B.C.D.101201201200【答案】A【详解】已知am+n=am+an+mn,令m=1可得an+1=a1+an+n=an+n+1,则n≥2时an-an-1=n,an-1+an-2=n-1,⋯,a3-a2=3,a2-a1=2,将以上式子累加可得an-a1=n+n-1+⋯+3+2,an=n+n-1+⋯+3+2+n+1nn+1n12111111=2,n=1时也符合,则an=2,a==2n-n+1,则a+a+a+⋯nn+1n1231111111201+a=2×1-2+2-3+⋯+201-202=2×1-202=101.故选:A.2011n*2已知数列an的首项a1=2,且满足an+1=an+2n∈N.若对于任意的正整数n,存在M,使得an<M恒成立,则M的最小值是.【答案】31n*1n【详解】∵数列an满足a1=2,且an+1=an+2n∈N,即an+1-an=2,∴当n=1时,a2-a1=11,212131n-1当n=2时,a3-a2=2,当n=3时,a4-a3=2,⋯⋯当n=n-1时,an-an-1=2,以上各式11n-11112131n-12×1-21n-1相加,得an-a1=2+2+2+⋯+2=1=1-2又∵a1=2,∴an=31-21n-11n-1-2,∵2>0,∴an<3,若对于任意的正整数n,存在M,使得an<M恒成立,则有M≥3,∴M的最小值是3.故答案为:3.*an3数列an满足a1=17,an=an-1+2n-1n≥2,n∈N,则的最小值是n【答案】8*【详解】解:∵an=an-1+2n-1n≥2,n∈N,∴an-an-1=2n-1,∴a2-a1=3,a3-a2=5,⋯⋯an-an-1=2n-1,n-13+2n-12又∵a1=17,上述n个式子相加得,an=17+3+5+⋅⋅⋅+2n-1=17+=n+16,2a2nn+161616∴==n+≥8,当且仅当n=即n=4时,等号成立,故答案为:8.nnnn【跟踪训练】1*1已知数列an,a1=1,且an+1=an-,n∈N.求数列an的通项公式;nn+11【答案】an=.n111111【详解】因为an+1=an-,所以an+1-an=-=-,当n≥2时,a2-a1=-,a3nn+1n(n+1)n+1n213 1111111-a2=-,⋯⋯,an-an-1=-,相加得an-a1=-,所以an=,当n=1时,a1=1也符合32nn-1n1n11上式,所以数列an的通项公式an=.故答案为:an=.nn2设数列an满足a1=2,a2=6,且an+2=2an+1-an+2.(1)求证:数列an+1-an为等差数列,并求an的通项公式;(2)设bn=ancosnπ,求数列bn的前n项和Tn.nn+2,n为偶数22【答案】(1)证明见解析,an=n+n;(2)Tn=2.n+1-,n为奇数2【解析】(1)由已知得an+2-2an+1+an=2,即an+2-an+1-an+1-an=2,∵a2-a1=4,∴an+1-an是以4为首项,2为公差的等差数列.∴an+1-an=4+(n-1)×2=2(n+1),当n≥2时,an=(an-an-1)+(an-12+an-2)+⋯+(a2-a1)+a1=2n+2(n-1)+⋯+2×2+2=n+n,当n=1时,a1=2也满足上式,所以an=2n+n;n2n(2)bn=ancosnπ=(-1)n+n=(-1)n(n+1),当n为偶数时,Tn=-1×2+2×3-3×4+4×5-⋯n(n+2)-(n-1)n+n(n+1)=2(2+4+⋯+n)=,当n为奇数时,2(n-1)(n+1)Tn=-1×2+2×3-3×4+4×5-⋯+(n-1)n-n(n+1)=Tn-1-n(n+1)=-n(n+1)22(n+1)=-,2nn+2,n为偶数2所以Tn=2.n+1-,n为奇数2考点三:叠乘法(累乘法)求通项an+1*若数列an满足=f(n)(n∈N),则称数列an为“类比数列”,求变比数列an的通项时,利用累an乘法。a2a3a4an具体步骤:=f(1),=f(2),=f(3),⋯,=f(n-1)a1a2a3an-1a2a3a4an将上述n-1个式子相乘(左边乘左边,右边乘右边)得:⋅⋅⋅⋯⋅=f(1)⋅f(2)f(3)⋅⋯⋅f(n-a1a2a3an-11)an整理得:=f(1)⋅f(2)f(3)⋅⋯⋅f(n-1)a1【精选例题】21数列an的前n项和Sn=n⋅an(n≥2,n为正整数),且a1=1,则an=.2【答案】nn+122222【详解】由Sn=n⋅an得:当n≥2时Sn-Sn-1=nan-n-1an-1⇒nan-n-1an-1=an,进而得22ann-1a2a3n-1an=n-1an-1,因为n≥2,所以n+1an=n-1an-1⇒=,故an=a1⋅⋅⋅⋯⋅an-1n+1a1a2an123n-11×222=1××××⋯×==,故答案为:an-1345n+1nn+1nn+1nn+14 *2数列an满足:a1=1,an=a1+2a2+3a3+⋯+n-1an-1n≥2,n∈N,则通项an=.1,n=1【答案】n!,n≥22【详解】由题意得:an+1=a1+2a2+3a3+⋯+n-1an-1+nan①,当n=1时,a2=a1,当n≥2时,an=a1a2+2a2+3a3+⋯+n-1an-1②,①-②得:an+1-an=nan⇒an+1=n+1an,n≥2,所以a1=1,=1,a1a3a4ann!1,n=1=3,=4,⋯,=n,累乘得an=n≥2,当n=1时,a1不满足an,则an=n!.故a2a3an-12,n≥221,n=1答案为:n!.,n≥22【跟踪训练】22*1设an是首项为1的正项数列,且(n+2)an+1-nan+2an+1an=0(n∈N),求通项公式an=2【答案】n(n+1)22*【详解】由(n+2)an+1-nan+2an+1an=0(n∈N),得[(n+2)an+1-nan](an+1+an)=0,∵an>0,∴an+1+anan+1na2a3a4an123>0,∴(n+2)an+1-nan=0,∴=∴an=a1⋅⋅⋅⋅⋅⋅⋅⋅=1××××⋅⋅⋅×ann+2a1a2a3an-1345n-2n-12×=(n≥2),nn+1n(n+1)22又a1=1满足上式,∴an=.故答案为:.n(n+1)n(n+1)2n+2n+1*2数列an满足:a1=,2-1an+1=2-2ann∈N,则an的通项公式为.3n2【答案】an=nn+12-12-1an+1naaaan+2n+1n+12-22-1nn-1n-22【详解】由2-1an+1=2-2an得,a=n+2=2⋅n+2,则a⋅a⋅a⋅⋅⋅a=2⋅n2-12-1n-1n-2n-31n-1n-2n-31an-12-12-12-12-1n-13n3⋅22⋅2⋅⋅2⋅⋅⋅⋅2⋅=2⋅,即=,又a1=,n+1nn-13n+1nann+132-12-12-12-12-12-112-12-1nn22所以an=nn+1.故答案为:an=nn+1.2-12-12-12-1an+1n+13已知数列an满足a1=1,=.ann(1)求数列an的通项公式;(2)若bn满足b2n=2an-24,b2n-1=2an-22.设Sn为数列bn的前n项和,求S20.【答案】(1)an=n;(2)-240an+1n+1a2a3an23nan【解析】(1)因为a1=1,=,所以当n≥2时,⋅⋅⋯⋅=××⋯×,则=n,anna1a2an-112n-1a1即an=n,当n=1时,也成立,所以an=n.(2)由(1),b2n=2an-24=2n-24,b2n-1=2an-22=2n-22,则b2n+b2n-1=4n-46,则S20=b1+b2+1+10×10b3+b4+⋯+b19+b20=4×1-46+4×2-46+⋯+4×10-46=4×-46×10=2-240.5 考点四:用“待定系数法”构造等比数列形如an+1=kan+p(k,p为常数,kp≠0)的数列,可用“待定系数法”将原等式变形为an+1+m=k(an+m)p(其中:m=),由此构造出新的等比数列an+m,先求出an+m的通项,从而求出数列an的通k−1项公式。【精选例题】∗1已知数列an的前n项和为Sn,首项a1=1且an+1=2an+1,若λ≤Sn+2n对任意的n∈N恒成立,则实数λ的取值范围为.【答案】λ≤3n【详解】由题设an+1+1=2(an+1),a1+1=2,则{an+1}是首项、公比都为2的等比数列,所以an+1=2,则nn2(1-2)n+1n+1∗an=2-1,Sn=-n=2-n-2,则Sn+2n=2+n-2在n∈N上递增,所以(Sn+2n)min=1-222+1-2=3,要使λ≤Sn+2n恒成立,则λ≤3.故答案为:λ≤32(多选题)数列an的首项为1,且an+1=2an+1,Sn是数列an的前n项和,则下列结论正确的是()A.a3=7B.数列an+1是等比数列n+1C.an=2n-1D.Sn=2-n-1【答案】AB【详解】解:∵an+1=2an+1,可得an+1+1=2an+1,又a1+1=2∴数列an+1是以2为首项,2为公比的nnn21-2等比数列,故B正确;则an+1=2,∴an=2-1,故C错误;则a3=7,故A正确;∴Sn=-n=1-2n+12-n-2,故D错误.故选:AB.3已知数列an满足递推公式an+1=2an+1,a1=1.设Sn为数列an的前n项和,则an=,n4+7-n-Sn的最小值是.an+1n17【答案】2-1;4【详解】因为an+1=2an+1,所以an+1+1=2an+1,所以数列an+1是首项为a1+1=2,公比为2的等比数列,nnn23n21-2n+1所以an+1=2,所以an=2-1;所以Sn=2+2+2+⋅⋅⋅+2-n=-n=2-2-n,所以1-2nnn+14+7-n-Sn4+7-n-2-2-nn9nn==2+-2,由对勾函数的性质可得,当n=1时,2=2,2a+1nnn22999nn9n9+-2=2+-2=;当n≥2时,2≥4,所以y=2+-2单调递增,当n=2时,2+-2=4n22nn222n91794+7-n-Sn17n17+-2=<;所以的最小值是.故答案为:2-1;.442an+144【跟踪训练】an+2,n为奇数1已知数列an满足:①a1=5;②an+1=.则an的通项公式an=;设Sn3an+2,n为偶数为an的前n项和,则S2023=.(结果用指数幂表示)6 n+323-4,n为奇数1013【答案】an=n+22×3-607932-2,n为偶数【详解】当n为奇数时an+1=an+2,令n=2k-1,k∈N*,则a2k=a2k-1+2,当n为偶数时an+1=3an+2,令n=2k,k∈N*,则a2k+1=3a2k+2=3a2k-1+2+2=3a2k-1+8,则a2k+1+4=3a2k-1+4,当k=1时a1+4=9,k-1k+1k+1所以a2k-1+4是以9为首项,3为公比的等比数列,所以a2k-1+4=9×3=3,所以a2k-1=3-4,则n+1n+1+1k+1k+12a2k=a2k-1+2=3-4+2=3-2,当n为奇数时,由n=2k-1,k∈N*,则k=,所以an=3-42n+32=3-4,n+3nn+22n2+123-4,n为奇数当n为偶数时,由n=2k,k∈N*,则k=,所以an=3-2=3-2,所以an=n+2,232-2,n为偶数231013所以S2023=a1+a3+⋯+a2023+a2+a4+⋯+a2022=3+3+⋯+3-4×1012+2310123+3+⋯+3-2×1011210122101131-331-31013=-4×1012+-2×1011=2×3-6079故答案为:an=1-31-3n+323-4,n为奇数1013n+2,2×3-607932-2,n为偶数511*2已知数列an满足a1=,an+1=an+n∈N.633(1)求证:数列a-1是等比数列;n2(2)求数列an的通项公式.11【答案】(1)证明见解析;(2)an=+.2n3a-11a+1-11a-11a-111*n+123n323n63n21【详解】(1)∵an+1=an+n∈N,∴====,33a-1a-1a-1a-13n2n2n2n2因此,数列a-1是等比数列;n2(2)由于a-1=5-1=1,所以,数列a-1是以1为首项,以1为公比的等比数列,∴a-1=12623n233n211n-1111×=,因此,an=+.33n2n33考点五:用“同除指数法”构造等差数列n+1*n+1an+1anan形如an+1=qan+p⋅q(n∈N),可通过两边同除q,将它转化为n+1=n+p,从而构造数列n为qqqan等差数列,先求出n的通项,便可求得an的通项公式q【精选例题】n1已知数列an满足a1=1,an+1=2an+3,求数列an的通项公式.nn【答案】an=3-2.nn+1an+12an1an21【详解】由an+1=2an+3两边同除以3得n+1=3⋅n+3,令bn=n,则bn+1=3bn+3,设bn+1+λ=3337 22222(bn+λ),解得λ=-1,bn+1-1=(bn-1),而b1-1=-,∴数列{bn-1}是以-为首项,为公比的33333等比数列,2nnnbn-1=-3,得an=3-2【精选例题】n+1∗1已知数列an满足a1=2,an+1-2an=2n∈N,求数列an的通项公式;n【答案】(1)an=n⋅2;n+1n+1an+1an【详解】解:(1)由an+1-2an=2,(左右两边同除以2)可得n+1-n=1,22ana1ann则数列是首项为=1,公差为1的等差数列,则=1+n-1=n,即an=n⋅2;2n22n考点六:用“同除法”构造等差数列11形如an−an+1=kan+1an(k≠0),的数列,可通过两边同除以an+1an,变形为−=−k的形式,从而构an+1an造出新的等差数列1,先求出1的通项,便可求得a的通项公式nananqan11p11形如an+1=(p,q为常数,pq≠0)的数列,通过两边取“倒”,变形为=+,即:−pan+qan+1anqan+1anp11=,从而构造出新的等差数列,先求出的通项,即可求得an.qanan【精选例题】an*11已知数列an满足a1=1,an+1=,(n∈N),则满足an>的n的最大取值为()4an+137A.7B.8C.9D.10【答案】Can111111【详解】解:因为an+1=,所以=4+,所以-=4,又=1,数列是以1为首4an+1an+1anan+1ana1an1111项,4为公差的等差数列.所以=1+4(n-1)=4n-3,所以an=,由an>,即>an4n-3374n-313,即0<4n-3<37,解得<n<10,因为n为正整数,所以n的最大值为9;故选:C3742已知正项数列an满足a1=1,且an−an+1=anan+1.(1)求数列an的通项公式;an1(2)记bn=,记数列bn的前n项和为Sn,证明:Sn<.2n+221【答案】(1)an=,(2)证明见解析n(1)数列a中,a>0,由a-a=aa,可得1-1=1又1=1=1,则数列1是首项为1nnnn+1nn+1an+1ana11an11公差为1的等差数列,则=1+n-1=n,则数列an的通项公式为an=ann1an1111(2)由(1)知an=n,则bn=2n+2==2n-n+1则数列bn的前n项和Sn=2n(n+1)8 1111111111121-2+2-3+3-4+⋯+n-n+1=21-n+1由n+1>0,可得111121-n+1<2,即Sn<2.【跟踪训练】*1(多选题)已知数列{an}满足a1=1,an-3an+1=2an⋅an+1(n∈N),则下列结论正确的是()A.1+1为等比数列B.{a}的通项公式为a=1annn-1n2×3-1C.{a}为递增数列D.1的前n项和T=3n-nnnan【答案】AB【详解】因为a-3a=2a⋅a,所以1+1=31+1,又1+1=2≠0,所以1+1是以2为首nn+1nn+1an+1ana1an项,3为公比的等比数列,1+1=2×3n-1即a=1,所以{a}为递减数列,1的前n项和Tann-1nann2×3-1nn01n-101n-11-3n=(2×3-1)+2×3-1+⋯+2×3-1=23+3+⋯+3-n=2×-n=3-n-1.故1-3选:AB.2已知数列an满足an+an+2=λan+1,λ∈R,若a1=1,a2=2,a2024≥2024,则λ的值可能为()5A.-1B.2C.D.-22【答案】BCD【详解】A:当λ=-1时,an+2=-an+1-an,得a3=-a2-a1=-3,a4=-a3-a2=1,a5=-a4-a3=2,a6=-a5-a4=-3,所以数列{an}是以3为周期的周期数列,则a2024=a2=2<2024,不符合题意,故A错误;B:当λ=2时,an+2=2an+1-an,得a3=2a2-a1=3,a4=2a3-a2=4,a5=2a4-a3=5,a6=2a5-a4=6,⋯,an=n,所以a2024=2024,符合题意,故B正确;5552535455C:当λ=时,an+2=an+1-an,得a3=a2-a1=2,a4=a3-a2=2,a5=a4-a3=2,a6=a5-a4=2,222222n-1⋯,an=2,2023所以a2024=2>2024,符合题意,故C正确;D:当λ=-2时,an+2=-2an+1-an,得a3=-2a2-a1=-5,a4=n-2a3-a2=8,a5=-2a4-a3=-11,a6=-2a5-a4=14,⋯,an=(-1)(3n-4),所以a2024=3×2024-4=6068>2024,符合题意,故D正确.故选:BCD考点七:取对数法构造等比数列求通项k形如an+1=can(c>0,an>0)的递推公式,则常常两边取对数转化为等比数列求解.k形如an+1=can(c>0,an>0)的递推公式,则常常两边取对数转化为等比数列求解.【精选例题】41已知数列an满足a1=2,an+1=an,则a6的值为()202410244096A.2B.2C.2D.2【答案】C4【详解】an+1=an,a1=2,易知an>0,故lnan+1=4lnan,故lnan是首项为ln2,公比为4的等比数列,lnan9 n-1510242014=4⋅ln2,lna6=4⋅ln2=ln2,故a6=2.故选:C.【跟踪训练】21已知数列an满足an+1=an-an+4,a1=1,则下列说法正确的有()A.数列an是递增数列B.3an<an+1≤4an1114nC.++⋯+<D.log2a1+log2a2+⋯+log2an≤2-2a1a2an3【答案】ACD22【详解】对于A项,由已知可得,an+1-an=an-2an+4=an-1+3>0,所以an+1>an,所以数列an是递222增数列,故A正确;对于B项,由已知可得,a2=a1-a1+4=4,a3=a2-a2+4=16,a4=a3-a3+4=244>24a3,故B项错误;对于C项,因为数列an是递增数列,所以n≥2时,有an>1.由已知可得an+1-1=an211111111-an+3>an-an,所以<2=-,所以有<-.当n≥3时,有an+1-1an-anan-1ananan-1an+1-1a1111111111111++⋯+<+-+-+⋯+-=+-=a2ana1a2-1a3-1a3-1a4-1an-1an+1-1a1a2-1an+1-1414-<.3an+1-131411541114又=1<,+=<,所以++⋯+<,故C项正确;对于D项,因为a1=1,a2=a13a1a243a1a2an3224,数列an是递增数列,则当n≥3时,有an>a2=4,则有4-an<0.所以,an+1=an-an+4<an,所以有2log2an+1log2an<=2.log2anlog2anlog2anlog2an-1log2a3n-2n-1又log2an=⋅⋯⋅log2a2<2×2=2,所以log2a1+log2a2+⋯+log2an<0+2+log2an-1log2an-2log2a2n-12n-12×1-2n12+⋯+2==2-2.当n=1时,有log2a1=0=2-2,1-22n当n=2时,有log2a1+log2a2=2=2-2.综上所述,log2a1+log2a2+⋯+log2an≤2-2,故D项正确.故选:ACD.2n+22已知正项数列an的前n项积为Tn,且4Tn=an,则使得Tn>2024的最小正整数n的值为()A.4B.5C.6D.7【答案】C2n+22n+1*n+1n【详解】由题,an>0,又∵4Tn=an,∴4Tn-1=an-1,n≥2,n∈N,两式相除可得an-1=an,上式两边取对lgann+1*lganlgan-1lga2n+1数,可得n+1lgan-1=nlgan,即=,n≥2,n∈N,∴××⋯×=lgan-1nlgan-1lgan-2lga1nn3××⋯×,n-12lgann+1n+123n+123化简得=,解得an=2,又4T1=a1,即a1=4,所以an的通项公式为an=2,∴Tn=2×2×lga12nn+3n+12nn+3-3+185-3+18511⋯×2=2,要使Tn>2024,即>22,解得n>,且5<<,所2222以满足题意的最小正整数n的值为6.故选:C.考点八:已知通项公式an与前n项的和Sn关系求通项问题解题思路:遇到an与Sn关系,要么把an换为Sn,要么把Sn换为an,利用an=Sn−Sn−110 【精选例题】21*1若数列an的前n项和为Sn=an+n∈N,则数列an的通项公式是an=.33n-1【答案】(-2)2121【详解】解:因为Sn=an+,当n=1时,S1=a1=a1+,所以a1=1,3333212121当n≥2时,Sn-1=3an-1+3,两式相减,Sn-Sn-1=3an+3-3an-1+3整理得an=-2an-1,n-1n-1所以an是首项为1,公比为-2的等比数列,故an=(-2).故答案为:(-2)∗2已知数列an的前n项和为Sn,a2=3,且an+1=2Sn+2(n∈N),则下列说法中错误的是()179A.a1=B.S4=C.an是等比数列D.Sn+1是等比数列22【答案】C1【详解】由题意数列an的前n项和为Sn,a2=3,且an+1=2Sn+2,则a2=2S1+2,即3=2a1+2,∴a1=,2即选项A正确;∵an+1=2Sn+2①,∴当n≥2时,an=2Sn-1+2②,①-②可得,an+1-an=2an,即an+1=3an,1a2=3,a1=,不满足a2=3a1,故数列an不是等比数列,故C错误,由n≥2时,an+1=3an可得,an=32n-2n-1179×3=3,则a3=9,a4=27,故S4=+3+9+27=,故B正确;由an+1=2Sn+2得:Sn+1-Sn=2Sn22Sn+1+13+2,∴Sn+1=3Sn+2,则Sn+1+1=3(Sn+1),即=3,故Sn+1是首项为S1+1=a1+1=,公比为Sn+123的等比数列,D正确,故选︰C.【跟踪训练】21记各项均为正数的数列an的前n项和是Sn,已知an+an=2Sn,n为正整数,(1)求an的通项公式;(2)设bn=tanan⋅tanan+1,求数列bn的前n项和Tn;tan(n+1)【答案】(1)an=nn∈N+,(2)Tn=-n-1tan12an-1+an-1=2Sn-1,22【解析】(1)当n≥2时,2相减得an-an-1+an-an-1=2an,即an-an-1-1an+an-1=0,an+an=2Sn,各项均为正数,所以an=an-1+1(n≥2),故an是以首项为1,公差以1的等差数列,所以an=nn∈N+;tan(n+1)-tan(n)tan(n+1)-tan(n)(2)tan1=tan[(n+1)-n]=,故tan(n+1)tann=-1,1+tan(n+1)tan(n)tan11Tn=b1+b2+b3+⋯+bn=[tan(n+1)-tan(n)+tan(n)-tan(n-1)+⋯+tan2-tan1]-n,tan11tan(n+1)Tn=[tan(n+1)-tan1]-n=-n-1.tan1tan12Sn2已知数列an的前n项和为Sn,且满足a1=1,=an+1-1.n(1)求数列an的通项公式;n2,n为奇数,(2)若数列Cn=2n+3,n为偶数,,求数列Cn的前2n项和T2n.2n2【答案】(1)an=2n-1;(2)T2n=4-1+2n+5n311 2Sn【解析】(1)因为=an+1-1,所以2Sn=nan+1-n,①当n≥2时,2Sn-1=(n-1)an-(n-1),②nan+1an111①-②得:2an=nan+1-(n-1)an-1,即nan+1-(n+1)an=1,所以-==-,n+1nn(n+1)nn+1ana211所以-=-,由a2=3,可得an=2n-1,当n=1时,a1=1,符合上式,所以an=2n-1.n22nn2,n为奇数,(2)由题意得,Cn=2n+3,n为偶数,则T2n=C1+C3+⋯+C2n-1+C2+C4+⋯+C2nn21-4n(7+4n+3)2n22n2=+=4-1+2n+5n,所以T2n=4-1+2n+5n.1-4233考点九:已知数列前n项积型求通项131记Tn为数列an的前n项积,已知+=3,则T10=()Tnan16151311A.B.C.D.3434【答案】C4Tn131【解析】n=1,T1=,Tn=a1a2a3⋯an,则an=(n≥2),代入+=3,化简得:Tn-Tn-1=,则Tn3Tn-1Tnan3n+313=,T10=.故选:C.332已知数列an中,Sn=a1+a2+⋯+an,Tn=S1×S2×⋯×Sn,且Sn+Tn=1.(1)求证:数列1是等差数列;Sn-1(2)求证:对于任意的正整数n,Tn是an与Sn的等比中项.1【解析】(1)当n=1时,S1=T1,S1+T1=1,则S1=T1=,由Sn+Tn=1可得Sn-1=-Tn,则Sn+1-1=2-Tn+1,Sn+1-1-Tn+11Sn+1111则==Sn+1,即==1+,即=-1+,故数列Sn-1-TnSn-1Sn+1-1Sn+1-1Sn+1-1Sn-11是首项为-2,公差为-1的等差数列;Sn-11n1(2)由(1)知,=-2+(n-1)×-1=-n-1,则Sn=,当n=1时,a1=S1=T1=,则a1⋅S1Sn-1n+122=T1;nn-1112n当n≥2时,an=Sn-Sn-1=-=,Tn=S1×S2×⋯×Sn=××⋯×=n+1nn(n+1)23n+11n112,则an⋅Sn=⋅=2=Tn;综上可得:对于任意的正整数n,Tn是an与Sn的等比n+1n+1n(n+1)(n+1)中项.【题型专练】*21已知数列{an}的前n项积为Tn,若对∀n≥2,n∈N,都有Tn+1⋅Tn-1=2Tn成立,且a1=1,a2=2,则数列{an}的前10项和为.*2【解析】解:数列{an}的前n项积为Tn,若对∀n≥2,n∈N,都有Tn+1⋅Tn-1=2Tn成立,且a1=1,a2=2,49则:T1=1,T2=a1⋅a2=2,进一步求出:T3=8,T4=2=16,⋯,所以:a1=1,a2=2,a3=4,⋯a10=2,12 1092-1故:S10=1+2+⋯+2==1024-1=1023.故答案为:10232-1*2已知数列an前n项积为Tn,且an+Tn=1(n∈N).(1)求证:数列1为等差数列;1-an2221(2)设Sn=T1+T2+⋅⋅⋅+Tn,求证:Sn>an+1-.211-an【解析】(1)因为an+Tn=1,所以Tn=1-an∴a1=,所以Tn-1=1-an-1(n≥2),两式相除,得an=21-an-1(n≥2),整理为a=1,再整理得,1-1=1(n≥2).所以数列1为以2为首n2-an-11-an1-an-11-an项,公差为1的等差数列.111n(2)因为an+Tn=1,所以a1=,=2,由(1)知,=2+n-1,故an=,所以Tn=a1⋅a2⋅⋅⋅⋅⋅21-a11-ann+112n1222111an=2×3×⋅⋅⋅×n+1=n+1.所以Sn=T1+T2+⋯+Tn=2+2+⋯+223(n+1)11111111111>++=-+-+⋯+-=-.又因为an+12×33×4(n+1)(n+2)2334n+1n+22n+21n+11111-=-=-,所以Sn>an+1-.2n+222n+2213

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-04-11 14:00:01 页数:13
价格:¥3 大小:289.93 KB
文章作者:180****8757

推荐特供

MORE