首页

2024届福建省福州市高三二模数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/17

2/17

3/17

4/17

5/17

6/17

7/17

8/17

9/17

10/17

剩余7页未读,查看更多内容需下载

{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} {#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} {#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} {#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} (在此卷上答题无效)2023~2024学年福州市高三年级2月份质量检测数学试题(完卷时间120分钟;满分150分)友情提示:请将所有答案填写到答题卡上!请不要错位、越界答题!一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合Axx1,B1,1,则AUBA.,1B.,1C.1D.1,1【答案】A【解析】集合A包含所有小于1的实数,B包含1和1两个元素,所以AUBxx1.22.已知点A2,2在抛物线C:x2py上,则C的焦点到其准线的距离为1A.B.1C.2D.42【答案】B2【解析】将点A2,2代入x2py,可得p1,故C的焦点到其准线的距离为1.3.已知e,e是两个不共线的向量,若2ee与ee是共线向量,则121212A.2B.2C.2D.2【答案】D【解析】依题意,设2ee=tee,又e,e是两个不共线的向量,121212所以t2,t,所以2.4.在△ABC中,AB2,AC4,BC27,则△ABC的面积为A.2B.23C.4D.43【答案】B222ABACBC1【解析】由余弦定理得,cosA,所以A120,2ABAC21所以SABACsinA23.△ABC2a2x5.设函数fx3在区间1,2上单调递减,则a的取值范围是A.,2B.,4C.2,D.4,【答案】Dxa2x【解析】函数y3在R上单调递增,而函数fx3在区间1,2上单调递减,1{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} a所以y2xa在区间1,2单调递减,所以2,解得a4.故选D.26.已知正方形ABCD的四个顶点都在椭圆上,椭圆的两个焦点分别在边AD和BC上,则该椭圆的离心率为231513A.B.C.D.2222【答案】C222xyb【解析】不妨设椭圆方程为1ab0,当xc时,y,所以22aba222b2b2|AB|2c,|BC|,因为四边形ABCD为正方形,所以2c,即bac,所以aa2221551acac,所以ee10,解得e,因为e0,1,所以e.227.甲、乙、丙三个地区分别有x%,y%,z%的人患了流感,且x,y,z构成以1为公差的等差数列.已知这三个地区的人口数的比为5:3:2,现从这三个地区中任意选取一人,在此人患了流感的条件下,此人来自甲地区的概率最大,则x的可能取值为A.1.21B.1.34C.1.49D.1.51【答案】D【解析】设事件D,D,D分别为“此人来自甲、乙、丙三个地区”,事件F,F,F分别为“此123123人患了流感,且分别来自甲、乙、丙地区”,事件G为“此人患了流感”.5x3x32x410x7由题可知,PF,PF,PF,PGPFFF,12312310001000100010005x3x32x4所以PDG,PDG,PDG,因为此人患了流感来自12310x710x710x75x3x3,3甲地区的概率最大,所以解得x,故选D.5x2x4,28.已知函数fx及其导函数fx的定义域均为R,记gxfx.若gx2的图象关于点2,0对称,且g2xg2x1g12x,则下列结论一定成立的是20242024A.fxf2xB.gxgx2C.gn0D.fn0n1n1【答案】C【解析】因为gx2的图象关于点2,0对称,所以gx的图象关于原点对称,即函数gx为奇函数,则g00,又g2xg2x1g12x,所以g2xg2x1g2x1,所以gt1gtgt10,所以gtgt1gt20,所以gt1gt2,所以gtgt3,即gxgx3,202420242025所以3是g(x)的一个周期;因为gngng0g1g20,故Cn1n03正确;2{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} 222取符合题意的函数fxcosx,则gxfxsinx,33323所以g00,又g02sing0,故2不是g(x)的一个周期,所以333gxgx2,排除B;21因为f1cos不是函数fx的最值,所以函数fx的图象不关于直线x1对称,32202420242所以fxf2x,排除A;因为fncosn10,所以排除D.n1n13二、多项选择题:本题共3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。9.已知等差数列an的前n项和为Sn,a24,S535,则A.na的最小值为1B.nS的最小值为1nnSnanC.为递增数列D.2为递减数列nn【答案】ABC5a1a5【解析】假设a的公差为d,由S5a35,所以a7,又a4,n53322n3n1所以d3,a11,所以an3n2,Sn.2211选项A:nann3n23n,故n1时nan的最小值为1,A正确;333312331292选项B:nSnn,令fxxx,所以fxxx,可知fx在区间n222222,单调递增,所以n1时nS取得最小值1,B正确;n9Sn31Sn选项C:n,故为递增数列,C正确;n22nan23a1a2an选项D:22,因为1,21,所以2不是递减数列,D错误.nnn12n10.在长方体ABCDABCD中,AB2,AAAD1,E为AB的中点,则11111A.ABBCB.AD平面EBC111135C.点D到直线AB的距离为D.点D到平面EBC的距离为3115【答案】BC【解析】如图建立空间直角坐标系Dxyz,易知D0,0,0,A11,0,1,B1,2,0,B11,2,1,C0,2,0,E1,1,0.3{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} 选项A,AB0,2,1,BC1,0,1,11A1BB1C0,2,11,0,110,所以A错误;选项B,显然ADBC,可得AD平面EBC,1111所以B正确;uuurAB255uuur选项C,记直线1,A1B的单位方向向量为u,则uuuur0,,,又A1D1,0,1A1B5521所以向量AD在直线AB上的投影向量为AQADuu0,,,1111552235则有D到直线AB的距离为DQADAQ,故C正确;1115选项D,设平面EB1C的法向量为mx,y,z,由B1C1,0,1,B1E0,1,1,uuuruuurDCm23可求得m1,1,1,又DC0,2,0,所以点D到平面EBC的距离d,1m3故D错误.11.通信工程中常用n元数组a,a,a,L,a表示信息,其中a0或1(i,nN*,1in).123ni设ua,a,a,L,a,vb,b,b,L,b,du,v表示u和v中相对应的元素(a对应b,123n123niii1,2,K,n)不同的个数,则下列结论正确的是A.若u0,0,0,0,0,则存在5个5元数组v,使得du,v1B.若u1,1,1,1,1,则存在12个5元数组v,使得du,v3C.若n元数组w(0,0,L,0),则du,wdv,wdu,v144424443n个0D.若n元数组w(1,1,L,1),则du,wdv,wdu,v1442443n个1【答案】ACD【解析】1选项A:满足条件的数组共有C5个,故A正确;53选项B:满足条件的数组共有C10个,故B错误;5选项C:设u,v中对应项同时为0的共有m0mn个,同时为1的共有s0snm个,从而对应项一项为1与另一项为0的共有nms个,这里nms,从而du,vnms,而du,wdv,w2snmsdu,v2sdu,v,故C正确,同理D正确.三、填空题:本大题共3小题,每小题5分,共15分。12.在复平面内,复数z对应的点的坐标是2,1,则iz___________.【答案】12i【解析】依题意可知z2i,所以izi2i12i.13.底面半径为2且轴截面为正三角形的圆锥被平行于其底面的平面所截,截去一个高为34{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} 的圆锥,所得的圆台的侧面积为.【答案】6【解析】由已知可得圆台的上底面半径r1,下底面半径r2,母线长l2,则该圆台的侧面积为rrl1226.14.在平面直角坐标系xOy中,整点P(横坐标与纵坐标均为整数)在第一象限,直线PA,22PB与eC:x2y4分别切于A,B两点,与y轴分别交于M,N两点,则使得△PMN周长为221的所有点P的坐标是_________.【答案】1,4或2,322【解析】因为直线PA,PB分别与eC:x2y4相切于A,B两点,且直线PA,PB分别与y轴交于M,N两点,所以PAPB,AMOM,BNON,所以△PMN的周长为PMMNPNPMOMONPNPMAMBNPNPAPB222PA2PCAC22PC4221,22所以PC5,设Px0,y0,x00,y00,所以x02y025,因为P为整点,所以点P的坐标为1,4或2,3.备注:只写出一个点坐标不得分.四、解答题:本大题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。15.(13分)已知函数fxsinx03,x是fx的零点.48(1)求的值;1(2)求函数yfxfx的值域.828【解析】(1)由已知可得fsin0,········································1分884解得k,kZ,············································································3分84即28k,kZ,··················································································4分又03,可得2.·············································································5分(2)由fxsin2x,可得41yfxfx8285{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} sin2xsinx2cos2xsinx212sinxsinx2192sinx,··················································································8分48其中1sinx1,19则当sinx时取得最小值,sinx1时取得最大值2,····························12分4819故函数yfxfx的值域为,2.········································13分828816.(15分)如图,四棱锥SABCD的底面为正方形,平面SAD平面ABCD,E在SB上,且AEBC.(1)证明:SA平面ABCD;(2)若SAAB2,F为BC的中点,且EF3,求平面AEF与平面SAD夹角的余弦值.【解法一】(1)因为BCAB,BCAE,AEIABA,所以BC平面SAB,·····························································································又SA平面SAB,所以BCSA,···········································································3分又BCPAD,所以SAAD,··················································································4分又平面SAD平面ABCD,平面SADI平面ABCDAD,SA平面SAD,所以SA平面ABCD.····························································································6分(2)由(1)得BC平面SAB,又SB平面SAB,所以BCSB,······························7分因为BF1,EF3,所以BE2,·······································································8分因为SA平面ABCD,AB平面ABCD,所以SAAB,1又SAAB2,所以SB22,所以BESB,······················································9分2由(1)知SA,AD,AB两两垂直,如图,以点A为原点,分别以AB,AD,AS所在直线为x轴,y轴,z轴建立空间直角坐标系,则A0,0,0,S(0,0,2),B(2,0,0),E1,0,1,F21,0.·························································10分uuuruuur所以AE1,0,1,AF2,1,0,···········································································显然平面SAD的一个法向量n1,0,0,·································································1uuurn2AE,设平面AEF的法向量为n2(x,y,z),则uuurnAF,2uuurn2AExz0,即uuur取x1,则n21,2,1,·····················································nAF2xy0,26{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} nn1612所以cosn,n,·····································································14分12nn66126设平面AEF与平面SAD的夹角为,则coscosn,n,1266所以平面AEF与平面SAD夹角的余弦值为.························································15分6【解法二】(1)因为BCAB,BCAE,AEABA,所以BC平面SAB,·································2分又SA平面SAB,所以BCSA,···········································································3分因为平面ABCD平面SAD,平面ABCD平面SADAD,ABAD,AB平面ABCD,所以AB平面SAD,又SA平面SAD,所以ABSA,···················5分又BCABB,BC平面ABCD,AB平面ABCD,所以SA平面ABCD.····························································································6分(2)由(1)知SA,AD,AB两两垂直,如图,以点A为原点,分别以AB,AD,AS所在直线为x轴,y轴,z轴建立空间直角坐标系,则S0,0,2,B2,0,0,F2,1,0.··················7分设SESB01,则AEASSE0,0,22,0,22,0,22,所以EFAFAE2,1,02,0,2222,1,22,······································9分2213由EF3,得221223,解得,或(舍去),22所以E1,0,1,····································································································10分uuuruuur所以AE1,0,1,AF2,1,0,···········································································显然平面SAD的一个法向量n1,0,0,·································································1uuurn2AE,设平面AEF的法向量为n2(x,y,z),则uuurnAF,2uuurn2AExz0,即uuur取x1,则n21,2,1,·····················································nAF2xy0,2nn1612则cosn1,n2,········································································14分nn66126设平面AEF与平面SAD的夹角为,则coscosn,n,1266所以平面AEF与平面SAD夹角的余弦值为.··························································15分617.(15分)人的性格可以大体分为“外向型”和“内向型”两种,树人中学为了了解这两种性格特征与人的性别是否存在关联,采用简单随机抽样的方法抽取90名学生,得到如下数据:7{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} 外向型内向型男性4515女性2010(1)以上述统计结果的频率估计概率,从该校男生中随机抽取2人、女生中随机抽取1人担任志愿者.设这三人中性格外向型的人数为X,求X的数学期望.(2)对表格中的数据,依据0.1的独立性检验,可以得出独立性检验的结论是这两种性格特征与人的性别没有关联.如果将表格中的所有数据都扩大为原来10倍,在相同的检验标准下,再用独立性检验推断这两种性格特征与人的性别之间的关联性,得到的结论是否一致?请说明理由.nadbc20.10.050.012附:参考公式:.abcdacbdx2.7063.8416.635【解法一】3(1)由统计结果可知,外向型男生在所有男生中占比为,外向型女生在所有女生中占比423为,故从该校男生中随机抽取一人为外向型男生的概率是,从该校女生中随机抽取一342人为外向型女生的概率是.····················································································2分3则X的所有可能取值为0,1,2,3.·········································································3分221111311121则PX0,PX1C,243484434362231131221323PX2C2,PX3,·······························7分43443484381121313所以EX0123.·······························································8分4864886(2)零假设为H:这两种性格特征与人的性别无关联.················································9分0由所获得的所有数据都扩大为原来10倍,可知22900450100150200906.9232.706x0.1···········································13分60030065025013依据0.1的独立性检验,可以推断这两种性格特征与人的性别有关联,与原来的结论不一致,原因是每个数据扩大为原来的10倍,相当于样本量变大为原来的10倍,导致推断结论发生了变化.·····································································································15分【解法二】3(1)由统计结果可知,外向型男生在所有男生中占比为,外向型女生在所有女生中占比423为,故从该校男生中随机抽取一人为外向型男生的概率是,从该校女生中随机抽取一342人为外向型女生的概率是.····················································································2分38{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} 从该校男生中随机抽取2人,抽到性格外向型的人数记为Y;从该校女生中随机抽取1人,132抽到性格外向型的人数记为Y,则Y:B2,,Y:B1,,·······································4分212433322所以EY2,EY1,··································································6分1242333213所以EXEYYEYEY.························································8分1212236(2)略,同解法一.18.(17分)22y已知双曲线W:x1,A3,0,动直线l:xmy30与x轴交于点B,且与W8交于C,D两点,tCD是BC,BD的等比中项,tR.(1)若C,D两点位于y轴的同侧,求t取最小值时△ACD的周长;(2)若t1,且C,D两点位于y轴的异侧,证明:△ACD为等腰三角形.【解法一】22y(1)因为动直线l:xmy30与x轴交于点B3,0,因为W:x1的右焦点为3,0,8所以点B为W的右焦点.设BCp,BDq,因为C,D两点位于y轴的同侧,所以CDpq,2因为tCD是BC,BD的等比中项,所以tCDBCBD,·······························2分2pqpq1t1所以pq2pq24,当且仅当pq时取等号,所以tmin,···················4分221当t时pq,所以AC2p2qAD,所以lx轴,··································5分2x3,由解得y8,228xy8,所以BCBD8,所以CD16,·································································6分由双曲线的定义得AC10,所以ACADCD10101636,即△ACD的周长为36.····················································································8分(2)设Cx1,y1,Dx2,y2,xmy30,22由22得8m1y48my640,8xy8,因为直线l与W交于C,D两点,28m10,48m64所以2且y1y22,y1y22,····························10分256m10,8m18m19{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} 22222由t1,可得BCBDCD,故1my11my21my1y2,22又C,D两点位于y轴的异侧,所以y1y20,所以y1y2y1y2,即5y1y2y1y2,26448m25所以5,解得m,····················································13分228m18m146422564所以y1y2,所以CDBCBD1my1y2116,949所以CD4,·····························································································15分BCAC2,4BDAC2,不妨设点C在第二象限,根据双曲线定义,得,即ADBD2,ADBD2,解得ACAD,所以△ACD是等腰三角形.····················································17分【解法二】(1)设Cx1,y1,Dx2,y2xmy30,22由22得8m1y48my640,8xy8,因为直线l与W交于C,D两点,28m10,48m64所以2且y1y22,y1y22,·····································2分256m10,8m18m16421由C,D两点位于y轴的同侧,可得y1y220,解得m,8m1822又tCD是BC,BD的等比中项,故可得BCBDtCD,22222故1my11my2t1my1y2,6422y1y28m21118m即t222,············································5分yy48m644m1124228m18m12212118m19又0m,故t8,2284m14m121111可得0t,即t且t0,所以tmin,··················································6分42221x3,当t即m0时,所以lx轴,由22解得y8,28xy8,所以BCBD8,所以CD16,22又AB6,所以AC8610,所以ACADCD10101636,即△ACD的周长为36.····················································································8分10{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} 6421(2)因为C,D两点位于y轴的异侧,故y1y220,所以m,8m18222118m18m1且由(1)知t221,4m14m155解得m或m,·····················································································12分225yy4512当m时,设CD的中点E的坐标为xE,yE,y,E22355451145xy33,所以点E的坐标为,,························13分EE33223354551又CD的垂直平分线的斜率为,所以CD的垂直平分线方程为yx,2323535即yx,······························································································15分22535又点A3,0在直线yx上,所以ACAD,即△ACD为等腰三角形.225当m时,同理可证,△ACD为等腰三角形.2综上所述,△ACD为等腰三角形.··········································································17分19.(17分)2已知函数fxxlnxx1.(1)讨论fx的单调性;x12(2)求证:fxe1;2xx(3)若p0,q0且pq1,求证:fpfq4.【解法一】(1)fx的定义域为0,,··············································································1分fxlnx2x1,·····························································································2分112x记txfx,tx2,xx11当x0,时,tx0,tx单调递增;当x,时,tx0,tx单调递减.····3分221所以txtln20,即fx0,·····························································4分max2所以fx在区间0,上单调递减.·········································································5分2(2)先证fxx1,记gxfxx1,则gxxlnxxxxlnxx1,1记mxlnxx1,则mx1,所以x0,1时,mx0,mx递增;xx1,时,mx0,mx递减.所以mxm10,所以mx0,又x0,所以gx0,故fxx1.max11{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} ··························································································································8分x12x12x12再证e1x1,即证ex0,记hxex,222xxxxxx2x1x则hxex11ex1,xxx记pxex1,则px1e0,所以px在x0,递增,x12所以pxp00,所以hx0,即e1x1,2xxx12所以fxe1.····················································································11分2xx(3)由(2)知mxlnxx1的最大值为0.因为p0,q0且pq1,则p,q之中至少有一个大于1,·····································12分11不妨设p1,则q0,由(1)可知fx为减函数,所以fqf,pp1所以fpfqfpf,··········································································14分p221211111因为fpfplnpp1ln1plnpp4pppppp11111plnpp4,记splnpp,则spmp110,ppppp11因为p1,所以p,所以fpf4,所以fpfq4.······················17分pp【解法二】(1)略,同解法一.·······························································································5分xx(2)构造函数hxex1x0,hxe1,x当x0时,hx0,hx单调递增,hxh00,所以ex1,························6分1构造函数φxlnxx1,φx1,x当x0,1时,φx0,φx单调递增;当x1,时,φx0,φx单调递减.·········所以φxmaxφ10,即φx0,即lnxx1成立.·············································7分22所以fxxlnxx1xx1x1x1,······················································8分x121212所以e1x11x,····················································9分222xxxxxx212121则只需证明xx1,即10,而10显然成立,·····················10分22xxxxxx12所以fxe1.····················································································11分2xx2(3)先证fxx1,记gxfxx1,则gxxlnxxxxlnxx1,1记mxlnxx1,则mx1,所以x0,1时,mx0,mx递增;x12{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#} x1,时,mx0,mx递减.······································································13分所以mxm10,所以mx0,又x0,所以gx0,故fxx1.max························································································································14分所以fpp1,fqq1,因为p0,q0且pq1,所以fpfqpq2,··············································································15分所以pq2pq212,所以pq2,则fpfq224.························································································································17分13{#{QQABKYIAggggAgBAAAhCQwXICAGQkBEAAAoOxEAMsAAByRFABAA=}#}

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2024-03-03 23:40:02 页数:17
价格:¥5 大小:2.04 MB
文章作者:180****8757

推荐特供

MORE