首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
安徽省合肥市第一中学2023-2024学年高三上学期第二次数学试题(Word版附解析)
安徽省合肥市第一中学2023-2024学年高三上学期第二次数学试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/22
2
/22
剩余20页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:函数、导数、三角函数、数列、向量、立体几何(其他高考部分尚未复习少量兼顾).一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足(i为虚数单位),则()A.3B.C.5D.【答案】D【解析】【分析】应用复数乘法化简复数,应用公式求复数的模.【详解】复数,故.故选:D.2.已知集合,若,则实数a的取值范围为()A.B.C.D.【答案】C【解析】【分析】解二次不等式及绝对值不等式,结合数轴即可求解.【详解】因为,,因为,则,所以.故选:C. 3.已知角的终边过点,则()A.B.C.D.【答案】A【解析】【分析】利用三角函数的定义、同角三角函数的商数关系及二倍角公式计算即可【详解】由题意知,所以.故选:A.4.在正项等比数列中,若,,则()A.1B.2C.3D.【答案】C【解析】【分析】根据等比数列性质有,代入计算即可得.【详解】因为为等比数列,所以,故,所以,又,所以.故选:C.5.陀螺又称陀罗,是中国民间最早的娱乐健身玩具之一,在山西夏县新石器时代的遗址中就发现了石制的陀螺.如图所示的陀螺近似看作由一个圆锥与一个圆柱的组合体,其中圆柱的底面半径为2,圆锥与圆柱的高均为2,若该陀螺是由一个球形材料削去多余部分制成,则该球形材料的体积的最小值为() A.B.C.D.【答案】D【解析】【分析】利用空间几何体的特征及球体的体积公式计算即可.【详解】由题意知当该陀螺中圆锥的顶点及圆柱的下底面圆周都在球形材料表面上时,球形材料的体积最小,设此时球形材料的半径为R,由题意得,解得,所以该球形材料的体积的最小值为.故选:D.6.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不排在两端,则不同的排法种数有()A.1120B.7200C.8640D.14400【答案】B【解析】【分析】相邻问题用捆绑法看成一个整体,丙不排两端可先排好其他人后再排丙.【详解】甲与乙相邻有种不同的排法,将甲与乙看作是一个整体,与除丙外的5人排好,有种不同的排法,再将丙排入隔开的不在两端的5个空中,有种不同的排法,所以共有种不同的排法.故选:B.7.已知椭圆:的离心率为,左、右焦点分别为,,是上一动点,若点到焦点的最大距离为,则的取值范围为()A.B.C.D.【答案】B【解析】【分析】由椭圆上的点到焦点的最大距离为及离心率可得椭圆方程,结合三角换元代入计算即可得. 【详解】由题意知,,所以,,所以,故C的方程为,设,又,故,,所以.故选:B.8.已知数列的前n项和为,且,若,则()A.B.C.D.【答案】A【解析】【分析】先对进行配方,放缩,得,应用累加法得,进而,应用裂项相消法即可求解.【详解】因为,则,即,结合,可得,则,所以,即, 故,,…,,上述式子累加,得,故,当时,满足上式,所以,所以,所以,故,因为,所以,所以.故选:A.【点睛】数列与不等式结合,关键是看能不能求和,不能的要对通项公式进行放缩后进行.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知数列的前n项和为,,,若,(是常数),则()A.数列是等比数列B.数列是等比数列C.D.【答案】BC【解析】【分析】根据题意知是公比为等比数列,然后根据等比数列的性质逐项判断求解即可.【详解】由题意知是公比为的等比数列,若则,所以,又,所以, 所以,不是定值,故不是等比数列,故A错误;因为,,所以,是定值,故是等比数列,故B正确;因为,所以,所以,故C正确;,故D错误.故选:BC.10.已知函数是偶函数,其图象的两个相邻对称轴间的距离为,将函数的图象向右平移个单位长度得到函数的图象,则()A.B.在上单调递增C.函数的图象关于点对称D.函数的图象在处取得极大值【答案】ABC【解析】【分析】根据相邻对称轴间的距离可得的最小正周期,结合为偶函数可求得的解析式,知A正确;根据三角函数平移变换原则可求得,采用代入检验的方法可判断出B正确;利用代入检验的方式可验证出为的对称中心,不是的极大值点,知C正确,D错误.【详解】对于A,图象的两个相邻对称轴间的距离为, 的最小正周期,,,为偶函数,,又,,,A正确;对于B,,则当时,,在上单调递增,在上单调递增,B正确;对于C,当时,,是的一个对称中心,又,的图象关于点对称,C正确;对于D,当时,,不是的极大值点,不是的极大值点,D错误.故选:ABC.11.在直角坐标系中,抛物线:的准线方程为,过的焦点作直线交于,两点,则()A.B.C.可能是直角三角形D.以为直径的圆与轴相切【答案】ABD【解析】【分析】根据题意可求出,即可对A项判断;设出直线方程,然后与抛物线联立结合根与系数的关系,可对B、C项判断;求出的中点坐标即半径即可对D项判断. 【详解】对于A项:抛物线:的准线为,解得,故A正确;对于B、C项:设的方程为,与联立可得,,,所以,所以是钝角,所以是钝角三角形,故B正确,C错误;对于D项:设的中点为,故,则以为直径的圆与y轴相切,故D正确.故选:ABD.12.在四面体中,,点关于直线的对称点为,则()A.B.的最大值为C.若与平面夹角的正切值为,则D.四面体体积的最大值为1【答案】ABD【解析】【分析】对A选项:可取中点,先证明平面,即可得;对B选项:作出点,计算出,再借助勾股定理与基本不等式即可得;对C选项:过点作平面于点,借助三角函数基本关系与余弦定理即可得;对D选项:当平面平面时,四面体体积取得最大值,计算体积即可得. 【详解】取的中点,连接,,则,,又,、平面,所以平面,所以,故A正确;连接,则,所以,所以,所以,得,当且仅当时等号成立,故B正确;过点作平面于点,则点在直线上,则为与平面所成的角,故,即,又,,所以,在中,有,即,所以,故C错误;由题知,当平面平面时,四面体体积取得最大值,且最大体积为,故D正确. 故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.已知,,则向量在上的投影向量的坐标为______.【答案】【解析】【分析】根据投影向量的求法,代入数据,即可求得答案.【详解】因为,,所以向量在上的投影向量为.故答案为:.14.已知是圆:上任意一点,则的取值范围为______.【答案】【解析】【分析】的几何意义为直线的斜率,再根据直线与圆得交点即可得出答案.【详解】设,变形可得,则的几何意义为直线的斜率,是圆:上任意一点,则,解得,即的取值范围为.故答案为:. 15.如图,在矩形中,,将沿折起到的位置,使得平面与平面的夹角为,则,之间的距离为______.【答案】或【解析】【分析】作,,结合面面角定义和向量数量积的运算得到的值,再通过数量积得运算律即可得到答案.【详解】作,,垂足分别为E,F,因为,则,所以,所以,同理,则,所以,因为平面与平面的夹角为,所以与的夹角为或,因为,,,所以.若与的夹角为,则,所以,所以;若与的夹角为,则, 所以,所以.故P,C之间的距离为或.故答案为:或.16.已知关于x的不等式在上恒成立,则实数t的取值范围是______.【答案】【解析】【分析】首先设,首先讨论的情况,再讨论的情况,同时利用二阶求导的方法研究的单调性与最值.【详解】令,则,由题意知,,,,设,,①当时,对任意的,,,则,此时函数在上单调递增,故,符合题意;②当时,对任意的恒成立,所以在上单调递增,因为,,(i)当,即当时,对任意的,且不恒为零,此时函数在上单调递增,则,符合题意;(ⅱ)当且,即当时,由零点存在定理可知,存在,使得,且当时,,则函数在上单调递减,所以,不合题意; (ⅲ)当,即当时,对任意的,且不恒为零,此时,函数在上单调递减,则,不合题意.综上所述,,故实数t的取值范围是.【点睛】关键点睛:本题的关键是利用函数的思想研究不等式,并结合导数研究函数的单调性与最值,对需进行合理的分类讨论.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量,函数.(1)求的解析式与单调递增区间;(2)若当时,恒成立,求实数m的取值范围.【答案】(1),单调递增区间为(2)【解析】【分析】(1)先化简函数为最简形式,结合单调区间的求解方法可得结果;(2)先求函数在区间上的最小值,然后可得答案.【小问1详解】,,所以,即.令,解得, 所以单调递增区间为.【小问2详解】当时,,所以,又当时,恒成立,所以,即实数m的取值范围为.18.已知数列的前n项和为,且满足.(1)求的通项公式;(2)若,求数列的前n项和.【答案】(1)(2)【解析】【分析】(1)应用由求的方法即可;(2)应用错位相减法即可.小问1详解】因为,①则当时,得,解得.当时,,②①—②,得,即,又,满足上式,所以,所以是以2为首项,2为公比的等比数列, 所以.【小问2详解】由(1)知,所以,所以,所以,所以.19.如图,在四棱锥中,平面,平面平面,,.(1)证明:;(2)若,为的中点,求与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)利用线面垂直判定线线垂直即可.(2)以A为坐标原点建立空间直角坐标系,用向量求法解决即可.【小问1详解】证明:连接,作,垂足为,因为平面平面,平面平面,平面,所以平面,又平面,所以,因为平面,平面,所以, 又,,平面,所以平面,因为平面,所以.【小问2详解】由题意知,,两两垂直,以A为坐标原点,以,,所在的直线分别为x轴,y轴,z轴建立空间直角坐标系(如图所示),则,,,,,,所以.由(1)知,平面,所以为平面的一个法向量,设与平面所成角为,所以,即直线与平面所成角的正弦值为.20.在中,角A,B,C的对边分别为a,b,c,且,.(1)求外接圆的面积; (2)若为锐角三角形,求的取值范围.【答案】(1)(2)【解析】【分析】(1)由正弦定理和二倍角公式化简求解即可;(2)由余弦定理将转换成,然后利用锐角三角形和正弦定理求出的范围,然后利用二次函数的性质即可求出答案.【小问1详解】在中,,,所以,由正弦定理得,因为,所以,所以,所以,因,所以,所以,所以,即.所以外接圆的半径为,故外接圆的面积为.【小问2详解】由(1)知,所以. 由正弦定理得,又为锐角三角形,所以,所以,所以,所以,所以,令,所以,当时,单调递增,所以,所以,即的取值范围为.21.如图,在多面体中,四边形是矩形,,平面,为的中点,,.(1)证明:平面;(2)求平面与平面的夹角的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)利用中位线的性质构造线线平行证线面平行即可;(2)建立合适的空间直角坐标系,利用空间向量计算面面夹角即可.【小问1详解】 连接交于点,连接,因为四边形为矩形,则为的中点,又为的中点,所以,因为平面,平面,所以平面.【小问2详解】因为,所以,又,所以,因为平面,平面,所以,,以A为坐标原点,以,,所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系,如图所示,则,,,,,所以,,.设平面的法向量为,则令,解得,,所以,设平面的法向量为,则令,解得,,所以.设平面与平面的夹角为,则,故平面与平面的夹角的余弦值为. 22.已知函数.(1)讨论函数的单调性;(2)将函数的图象向左平移1个单位长度得到函数的图象,若存在和为2的正实数和,且,使得,求实数a的取值范围.【答案】(1)在上单调递减,在上单调递增(2)【解析】【分析】(1)求导得到,再分,讨论求解;(2)易得,由,得到,再结合,得到,令,得到,转化为函数在区间上有零点求解.【小问1详解】解:由题意知函数的定义域为,.若,则,在上单调递减; 若,令,得,令,得,所以在上单调递减,在上单调递增.综上,若,则在上单调递减;若,则在上单调递减,在上单调递增.【小问2详解】由题意知,,由,得,即,将代入得,即.令,,转化为函数在区间上有零点,,其中,函数的对称轴方程为,若,则恒成立,在区间上单调递减,又,所以,故在区间上无零点;若,则在上有一个实数根,所以在上,,单调递增,在上,,单调递减,又,得.下面证明函数在减区间上存在零点, 考虑中含参数,取,则,当时,,则,令,则,令,当时,,所以函数在上为减函数.因为,所以恒成立,所以为上的减函数,所以,又,所以,所以函数在减区间上存在零点.综上所述,,故实数的取值范围为.【点睛】关键点点睛:本题第二问的关键是通过对数运算将,转化为,然后令,转化为的零点问题而得解.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
安徽省合肥市第一中学2023-2024学年高二物理上学期素质拓展试题(二)(Word版附解析)
安徽省合肥市第一中学2023-2024学年高二上学期期中考试数学试题(Word版附解析)
安徽省合肥市第五中学2023-2024学年高三上学期11月教学评价地理试题(Word版附解析)
安徽省合肥市第一中学2023-2024学年高一上学期期中历史试题(Word版附解析)
安徽省合肥市第一中学2023-2024学年高一上学期期中联考数学试题(Word版附解析)
安徽省合肥市六校2023-2024学年高三上学期期中联考语文试题(Word版附解析)
安徽省合肥市重点中学2023-2024学年高一上学期期中联考数学试题(Word版附解析)
安徽省合肥市合肥卓越中学2023-2024学年高二上学期期中数学试题(Word版附解析)
安徽省合肥市重点中学2023-2024学年高二上学期期中联考数学试题(Word版附解析)
安徽省合肥市第一中学2023-2024学年高一上学期期中语文试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2024-01-17 00:35:02
页数:22
价格:¥3
大小:1.98 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划