首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
河南省安阳市滑县2022-2023学年高一下学期期末数学试题(Word版附解析)
河南省安阳市滑县2022-2023学年高一下学期期末数学试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
绝密★启用前滑县2022-2023学年下学期期未测评试卷高一数学注意事项:1.答卷前,考生务必将自己的姓名、考号等填写在答题卡和试卷指定位置上.2.考生作答时,请将答案填写在答题卡上,在本试卷上答题无效.回答选择题时,如需改动,用橡皮擦干净后,再选泽其他答案标号.一,选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足,其中i为虚数单位,则复数的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据复数的除法运算求出,由共轭复数的概念及复数的几何意义即可求解.【详解】由题意,,所以复数z的共轭复数,复数z的共轭复数在复平面上对应的点为,位于第四象限.故选:D.2.某学校有教师200人,男学生1600人,女学生1200人.现用分层随机抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了60人,则n的值为()A.150B.160C.180D.200【答案】A【解析】【分析】利用分层抽样等比例的性质列式即可得解.【详解】依题意,得,解得,故n的值为.故选:A. 3.如果复数z满足:,那么()A.B.C.D.【答案】B【解析】【分析】根据复数的模长、复数相等即可求得复数.【详解】设,则,由复数相等的充要条件,得解得即.故选:B.4.在中,边BC上的中线与边AC上的中线的交点为E,若,则()A.1B.-1C.D.【答案】A【解析】【分析】利用平面向量的基本定理结合条件即得.【详解】由题可知为三角形的重心,则,,,.故选:A.5.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则至少有2只测量过该指标的概率为()A.B.C.D.【答案】C【解析】【分析】首先将这5只兔子编号,通过列举样本点的方法,结合古典概型概率公式,即可求解.【详解】设5只兔子中测量过该指标的3只为,,,未测量过该指标的2只为,,则从5只兔子中随机取出3只的所有可能情况为,,, ,,,,,,共10种可能.其中至少有2只测量过该指标的情况为,,,,,,,共7种可能.所以至少有2只测量过该指标的概率为.故选:C6.为了了解某校高三学生视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组的频数和为64,最大频率为,设视力在到之间的学生人数为a,则a的值为()A.27B.48C.54D.64【答案】C【解析】【分析】根据频率分布直方图的性质,对应求得频率与频数,可得答案.【详解】前两组的频数为,因为后五组的频数和为64,所以前三组的频数和为36,所以第三组的频数为,又最大频率为0.34,故第四组的频数为,所以.故选:C.7.已知满足,则夹角的余弦值为()A.B.C.D.【答案】D【解析】 【分析】根据数量积的运算律,整理化简等式,建立方程,解得平方和,结合完全平方和公式,解得模长乘积,利用夹角公式,可得答案.【详解】由題意,向量,满足,,可得,所以,又由,所以,设向量与的夹角为,则.故选:D.8.如图,在三棱柱中,过的截面与AC交于点D,与BC交于点E(D,E都不与C重合),若该截面将三棱柱分成体积之比为的两部分,则()A.B.C.D.【答案】C【解析】【分析】根据面面平行的性质得到,得到特殊图形,根据棱台和棱柱的体积公式直接求解即可.【详解】因为三棱柱,所以,面面,又因为面面,面面,所以,显然为三棱台,设,(),三棱柱的高为,则, 所以三棱柱体积为,三棱台的体积为,.①三棱台的体积占,则,得,得或,均不符合题意;②三棱台的体积占,则,得,得或,因为,所以.故选:C二,选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分9.设、、为不重合的平面,m,n为不重合的直线,则下列命题为真命题的是()A.若,,则B.若,,则C.若,,,则D.若,则【答案】AB【解析】【分析】根据平行的传递性、面面垂直判定定理、面面平行判定定理,可得答案.【详解】若,,根据平行的传递性,则,故A正确;直线,而,即,,所以,,故B正确;和两条平行直线分别平行的两个平面可以平行也可以相交,故C错误;两个平面垂直于第三个平面,这两个平面可以平行也可以相交,故D错误.故选:AB.10.随着生活节奏的加快,人们越来越注意养生和锻炼身体,其中走路是一种简单的锻炼方式,它不仅可以减肥,还可以增强心肺功能等.甲,乙两人通过某软件记录了各自在同一周内的日步数(单位:千步),统计如下表所示:星期一星期二星期三星期四星期五星期六星期日 甲179.514.55.217.812.114.9乙15139.9147.412.612.1根据上述表格,在这一周内,下列说法正确的是()A.甲的日步数的中位数大于乙的日步数的中位数B.甲的日步数的平均数小于乙的日步数的平均数C.甲的日步数的极差大于乙的日步数的极差D.甲的日步数没有乙的日步数稳定【答案】ACD【解析】【分析】根据样本数据的中位数、平均数、极差、方差等概念逐项进行判断即可.【详解】甲的日步数的中位数为14.5,乙的日步数的中位数12.6,甲的日步数的中位数大于乙的旦步数的中位数,选项正确;甲的日步数的平均数为,乙的日步数的平均数为,甲的日步数的平均数大于乙的日步数的平均数,B选项错误;甲的日步数的极差为12.6,乙的日步数的极差为7.6,甲的日步数的极差大于乙的日步数的极差,C选项正确;甲的日步数两极分化严重,极差大,在平均数附近的数据少,所以甲的日步数的方差比乙的日步数的方差大,因此乙的日步数比甲的日步数稳定,故D选项正确.故选:ACD.11.在中,内角A、B、C对应的边分别为a,b,c,则下到说法正确的是()A.若,则B.若,则C.若,则是等腰三角形D.【答案】ACD【解析】【分析】对A:根据余弦函数的单调性分析判断;对B:根据正弦定理分析证明;对C:利用正、余弦定理分析判断;对D:根据两角和差公式分析判断.【详解】若,因为在上单调递减, 且,所以,故A正确;由正弦定理得,解得,又因为,且,所以或,故B错误;因为,根据正弦定理可得,由余弦定理可得,则,即,是等腰三角形,故C正确;因为,在中,,则,所以,故D正确.故选:ACD.12.如图,正方体的棱长为1,点M是侧面上的一个动点,点P是的中点,则下列结论正确的是()A.三棱锥的体积与点M的位置有关B.若.则点M在侧面上运动路径的长度为C.若,则的最大值为D.若,则的最小值为【答案】BC【解析】【分析】对A:根据正方体的性质结合锥体的体积公式分析判断;对B:根据题意分析可得点的轨迹是以为圆心,为半径的半圆弧,进而可得结果;对C、D:根据题意分析可得点的轨迹是线段 ,进而可得结果.【详解】对于选项A:如图1,三棱锥的体积,因为点P为的中点,所以的面积是定值,又因为点M到面的距离是正方体的棱长,所以三棱锥的体积是定值,故A错误;对于选项B:如图2,过点P作,垂足为点Q,连接,则由正方体的性质得平面,平面,所以,又因为,正方体的棱长为1,所以,可得点的轨迹是以为圆心,为半径的半圆弧,所以点在侧面上运动路径的长度为,故正确;对于选项C,D:如图3,过点作,垂足点,则点是的中点,连接QC,取BC的中点,连接,,,则,,因为,所以,因为平面,且平面,所以,,平面, 所以平面,平面,所以,所以点的轨迹是线段,在中,,,可得,所以的最大值为,故C正确;在中,,可知为锐角,则,所以点到的距离为,所以的最小值为,故D错误.故选:BC.【点睛】关键点睛:对B:分析可得,可知点的轨迹是以为圆心,为半径的半圆弧;对C、D:分析可得,所以点的轨迹是线段.三,填空题:本题共4小题,每小题5分,共20分13.已知甲、乙两组数据从小到大排列,甲:27,28,39,,49,50;乙:24,27,,43,48,52.若这两组数据的第40百分位数、第50百分位数分别相等,则______【答案】【解析】【分析】利用百分位数的定义求解.【详解】因为,, 所以第40百分位数为,第50百分位数为,则,所以.故答案为:.14.已知A(-2,1),B(1,2),C(0,-2),D(-3,1),则向量在向量上的投影向量为______(用坐标表示)【答案】【解析】【分析】根据投影向量的概念与平面向量坐标运算求解即可.【详解】因为,,,所以,所以向量在向量上的投影向量为.故答案为:.15.某同学为了测量学校天文台的高度,选择学校宿舍楼三楼一阳台,到地面的距离为,在它们之间的地面上的点(、、三点共线)处测得阳台,天文台顶的仰角分别是和,在用台处测得天文台顶的仰角为,假设、和点在同一平面内,则学校天文台的高度为______.【答案】【解析】【分析】由已知可得,求出、的大小,利用正弦定理求出,然后在可求出的长.【详解】在中,,在中,,, ,由正弦定理得,故,在中,,故学校天文台的高度为.故答案:.16.在三棱锥中,平面平面,,且,是等边三角形,则该三棱锥外接球的表面积为______.【答案】【解析】【分析】通过题意画出图像,通过三棱锥图像性质以及三棱锥外接球的相关性质确定圆心位置,最后根据各边所满足的几何关系列出算式,即可得出结果.【详解】如图所示,作中点,连接、,在上作的中心,过点作平面的垂线,在垂线上取一点,使得,因为三棱锥底面是等边三角形,是的中心,所以三棱锥外接球球心在过点的平面垂线上,又因,则即为球心,因为平面平面,,,平面平面,,所以平面,,, ,,设球的半径为,则,,即,解得,故三棱锥外接球的表面积为.故答案为:【点睛】三棱锥外接球表面积的问题,从以下几个角度考虑:(1)三棱锥的性质的应用;(2)通过三棱锥的几何特征确定外接球的球心和半径;(3)推理能力的应用;(4)数形结合,化归与转化思想的应用.四、解答题:本题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤.17.已知向量,.(1)若,求实数k的值;(2)若,求实数t的值.【答案】(1)(2)【解析】【分析】(1)求出向量、的坐标,利用平面向量共线的坐标表示可求得实数的值.(2)求出向量、的坐标,依题意可得,根据数量积的坐标运算计算可得. 【小问1详解】因为,,所以,.因为,所以,解得.【小问2详解】,因为,所以,解得.18.某学校高一年级共1120人,在一次数学考试中随机抽取了100名学生成绩,发现分数都在内,统计得到的频率分布直方图如图所示(1)求图中a的值;(2)试估计这100名学生得分的平均数中位数(结果按四舍五入取整数):(3)现在按分层随机抽样的方法在和两组中抽取5人,再从这5人中随机抽取2人参加这次数学考试的总结会,求两组中各有一人被抽取的概率【答案】(1)(2)(3)【解析】【分析】(1)利用频率分布直方图的频率之和为,得到关于的方程,解之即可得解;(2)利用频率分布直方图平均数与中位数的解法求解即可;(3)利用列举法,结合古典概型的概率公式求解即可.【小问1详解】因为频率分布直方图的频率之和为, 所以,则.【小问2详解】由频率分布直方图可得这100名学生得分的平均数为,因为,,所以中位数位于,不妨设为,则,解得,所以中位数为.小问3详解】在和两组中的人数分别为,,故在分组中抽取的人数为,分别记作,在分组中抽取的人数为,分别记作,则从这5人中随机抽取2人的所有抽取方法为,,,,,,,,,,共有10种,其中两组中各有一人被抽取的方法有,,,,,,共6种,所以两组中各有一人被抽取的概率为.19.如图所示,菱形的对角线与交于点,点、分别为、的中点,交于点,将沿折起到的位置.(1)证明::(2)若,,,求二面角的大小【答案】(1)证明见解析(2) 【解析】【分析】(1)根据菱形的几何性质、中位线定理以及等腰三角形的“三线合一”性质,结合线面垂直判定定理与性质定理,可得答案;(2)根据二面角的平面角定义,作图,根据图中的几何性质,结合线面垂直定理定理,利用锐角三角函数,可得答案.【小问1详解】在菱形ABCD中,,,又点E,F分别为AD,CD的中点,所以,则,易知,所以.因为,平面,所以平面,因为平面,所以.【小问2详解】由,得,因为,所以,所以,于是,所以.由(1)知平面,又平面,所以,所以即为二面角的平面角,因为,所以二面角的大小为.20.与学生安全有关的问题越来越受到社会的关注和重视,为了普及学生安全教育,某社区举办学生安全知识竞赛活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关学生安全知识的问题.已知甲家庭回答正确这道题的概率是,甲、丙两个家庭都回答错误的概率是.乙、丙两个家庭都回答正确的概率是,各家庭是否回答正确互不影响,(1)求乙、丙两个家庭各自回答正确这道题的概率:(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率【答案】(1),(2)【解析】 【分析】(1)根据独立事件的乘法公式即可得到方程,解出即可;(2)利用独立事件的乘法公式和互斥事件的加法公式即可得到答案.【小问1详解】记“甲家庭回答正确这道题”“乙家庭回答正确这道题”“丙家庭回答正确这道题”分别为事件A,B,C,则,,,即,,所以,,所以乙、丙两个家庭各自回答正确这道题的概率分别为,.【小问2详解】有3个家庭回答正确的概率为,有2个家庭回答正确的概率为,所以不少于2个家庭回答正确这道题的概率.21.在如图所示的几何体中,四边形为矩形,平面,,且.(1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积.【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)由题意可得,,则由线面平行的判定定理可得平面, 平面,再由面面平行的判定定理可得平面平面,再由面面平行的性质可证得结论;(2)由已知条件可得平面BCE,再由面面垂直的判定定理可证得结论;(3)由题意可得平面平面,则平面,所以,从而可求得结果.【小问1详解】∵四边形是矩形,∴,又平面,平面,∴平面.∵,平面,平面,∴平面.∵,平面,∴平面平面,又平面,∴平面.【小问2详解】∵平面,平面,∴,在矩形中,,又∵,平面∴平面.又平面,∴平面平面.【小问3详解】∵平面,平面,∴平面平面.又,平面平面,平面,∴平面,则为三棱锥的高,且.∵, ∴,∴.22.在ABC中.a,b,c分别是内角A,B,C所对的边,(1)求角C:(2)若,求锐角ABC面积的取值范围.【答案】(1)(2)【解析】【分析】(1)对已知等式利用正弦定理统一成角的形式,然后化简可求出角;(2)设的外接圆半径为,利用正弦定理将已知等式化简变形可求得,再利用正弦定理可求得,,然后表示出三角形的面积,利用三角函数恒等变换公式化简,再利用正弦函数的性质可求得结果.【小问1详解】及正弦定理得,∴,∴,即,∴,∵,∴,∵,∴.【小问2详解】设外接圆的半径为,由,得,即,则,∴.的面积.∵,∴,,∴ ,∵,,,∴,∴,∴,
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022年河南省安阳市滑县中考二模语文试题(解析版)
河南省安阳市滑县2022学年高二化学下学期期末试题含解析
河南省安阳市2022-2023学年高三英语一模试题(Word版附解析)
河南省安阳市滑县2022-2023学年高一语文下学期期末试题(Word版附解析)
河南省安阳市2022-2023学年高一语文上学期期末试题(Word版附解析)
河南省安阳市2022-2023学年高一语文上学期期中试题(Word版附解析)
河南省安阳市滑县2022-2023学年高二语文下学期期末试题(Word版附解析)
河南省安阳市2022-2023学年高三语文上学期期中试题(Word版附解析)
河南省安阳市2022-2023学年高三语文上学期期中试题(Word版附解析)
河南省焦作市2022-2023学年高一下学期期中数学试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2024-01-15 04:40:01
页数:19
价格:¥2
大小:2.24 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划