首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
四川省内江市威远县威远中学2023-2024学年高三数学(文)上学期9月月考试题(Word版附解析)
四川省内江市威远县威远中学2023-2024学年高三数学(文)上学期9月月考试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/18
2
/18
剩余16页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
威远中学校2023-2024学年高三上学期月考数学(文科)2023.9.22数学试题共4页.满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.第Ⅰ卷(选择题,共60分)一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.)1.设集合A={x|x2﹣x﹣2>0},B={x|0<<2},则A∩B=( )A.(2,4)B.(1,1)C.(﹣1,4)D.(1,4)【答案】A【解析】【分析】可求出集合,,然后进行交集的运算即可.【详解】A={x|x<﹣1或x>2},B={x|1<x<4};∴A∩B=(2,4).故选A.【点睛】本题主要考查描述法、区间的定义,一元二次不等式的解法,对数函数的单调性,以及交集的运算.2.为虚数单位,复数满足,则()A.B.C.D.【答案】B【解析】【分析】根据复数的四则运算可得复数,进而可得. 【详解】由,得,所以,故选:B.3.已知向量,,则()A.2B.3C.4D.5【答案】D【解析】【分析】根据向量坐标运算及模长公式求解即可.【详解】,,,.故选:D.4.已知为奇函数,且时,,则()A.B.C.D.【答案】D【解析】【分析】由奇函数性质及解析式求解即可.【详解】为奇函数,且时,,.故选:D5.已知x,y满足约束条件,则目标函数的最小值为().A.B.C.2D.4【答案】B【解析】【分析】画出可行域及目标函数,利用几何意义求出最小值. 【详解】画出约束条件表示的平面区域,如图中阴影部分所示.目标函数,即,平移直线,当其过点A时纵截距最小,即z最小.由,可得即点,所以.故选:B6.已知命题:函数在上是减函数,命题:恒成立,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】利用二次函数的性质、基本不等式求得两个命题,再利用充分与必要条件的相关定义判定即可.【详解】易知函数的对称轴为,即函数的单调递减区间为,故,命题,;又恒成立等价于,由基本不等式可知,当且仅当时取得等号,即,命题,显然,即可以推出不能推出,故是的充分不必要条件.故选:A 7.函数的图象大致是()A.B.C.D.【答案】C【解析】【分析】分析函数的奇偶性排除两个选项,再利用时,值为正即可判断作答.【详解】函数定义域为R,,即是奇函数,A,B不满足;当时,即,则,而,因此,D不满足,C满足.故选:C8.设,,,则,,的大小关系是.A.B.C.D.【答案】C【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间 的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A.B.C.D.【答案】A【解析】【分析】在中,由余弦定理求出,从而根据两个等边三角形的面积比求得所求概率.【详解】在中,,,,由余弦定理,得,所以,所以所求概率为.所以本题答案为A.【点睛】本题考查几何概型和余弦定理应用,本题关键在于利用余弦定理求出,属中档题.10.已知函数,则下列结论成立的是()A.的最小正周期为B.的图象关于直线对称C.的最小值与最大值之和为0D.在上单调递增【答案】B【解析】【分析】对于根据即可求出;对于可根据函数在对称轴处取的最值验证;对于利用解析式可直接求得最大和最小值,验证即可;对于可求得函数的单调增区间,验证即可.【详解】对于,的最小正周期为,故错误; 对于,2为最大值,所以的图象关于直线对称,故正确;对于依据函数解析式得故错误;对于令,解得令,得的一个增区间为,故在上为减函数,在上为增函数,故错误.故选:11.已知函数是上的偶函数,,当时,,则()A.的图象关于直线对称B.4是的一个周期C.在上单调递减D.:【答案】A【解析】【分析】易得为奇函数,利用函数的周期性与奇偶性结合选项逐个判断即可.【详解】由题知,因为函数是上的偶函数,所以为奇函数,所以对于A:因为所以,从而所以所以的图象关于直线对称,A选项正确; 对于B:由A知所以,从而所以是以8为周期的函数,B选项错误;对于C:当时,为增函数,又因为为奇函数所以在上单调递增,C选项错误;对于D:因为所以又因为在上单调递增所以,D选项错误;故选:A.12.已知函数(,e为自然对数的底数)与的图象上存在关于直线对称的点,则实数的取值范围是()A.B.C.D.【答案】A【解析】【分析】根据题意可将问题转化为方程在上有解,分离参数可得,令,利用导数求出值域即可求解.【详解】因为函数()与的图象上存在关于直线对称的点, 则函数(,e为自然对数的底数)与函数的图象有交点,即在上有解,即在上有解,令,(),,当时,,函数为减函数,当时,,函数增函数,故时,函数取得最小值,当时,,当时,,故实数的取值范围是.故选:A【点睛】本题考查了利用导数求函数的最值,考查了转化与化归的思想,考查了计算求解能力,属于中档题.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.值是_________.【答案】【解析】【分析】根据指数与对数运算性质计算即可. 【详解】.故答案为:-214.函数的值域为__________【答案】【解析】【分析】根据二次函数的单调性直接求解即可.【详解】为开口方向向上,对称轴为的抛物线,上单调递减,在上单调递增,当时,;当时,,的值域为.故答案为:.15.已知,若数列的前项和为,则的取值范围为___________.【答案】【解析】【分析】利用裂项相消法进行求解即可.【详解】因为,所以,因此,所以的取值范围为故答案为: 16.已知函数的图象经过四个象限,则实数的取值范围为______.【答案】【解析】【分析】求导,分,与三种情况,结合函数极值及函数图象的走势,得到不等式,求出实数a的取值范围.【详解】由函数,则,当时,不经过三四象限,不合题意,舍去,当时,由得或,若,则当或时,,单调递增,当时,,单调递减,故在处取得极大值,且极大值为,故经过第二象限,在处取得极小值,且极小值为,函数一定过第三和第一象限,要想经过第四象限,只需,解得;若,则当或时,,单调递减,当时,,单调递增,故在处取得极小值,且极小值为,在处取得极大值,且极大值为,故经过第一象限,函数一定过第二和第四象限,要想经过第三象限,只需,解得,综上,实数a的取值范围是.故答案为:【点睛】关键点点睛:本题考查用导数研究函数的单调性与极值,利用函数图象的变化趋势后得出极值满足的性质,从而求解.三、解答题(本题共计6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.近日,某市市民体育锻炼的热情空前高涨.某学生兴趣小组在月日随机抽取了该市人,并对其当天体育锻炼时间进行了调查,如图是根据调查结果绘制的体育锻炼时间的频率分布直方图,锻炼时间不少于分钟的人称为“运动达人”.(1)估算这人当天体育锻炼时间的众数和平均数(每组中的数据用组中值代替);(2)根据已知条件完成下面的列联表,并据此判断是否有的把握认为“运动达人”与性别有关.非“运动达人”“运动达人”合计男性女性合计附:,,临界值表:0.050.013.8416.635【答案】(1)众数为35,平均数为(2)填表见解析;没有的把握认为“运动达人”与性别有关【解析】【分析】(1)由频率分布直方图求众数与平均数知识可得答案;(2)由题目数据可完成列联表,后由独立性检验知识可得答案.【小问1详解】(1)由众数的定义可知,这人当天体育锻炼时间的众数为的组中值,即35,设这人当天体育锻炼时间的平均数为; 则;【小问2详解】根据已知条件,列联表如下:非“运动达人”“运动达人”合计男性女性合计根据列联表中的数据有,所以没有的把握认为“运动达人”与性别有关.18.等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】【分析】(1)根据等比数列的通项公式,结合等比数列的下标性质进行求解即可;(2)利用错位相减法进行求解即可.【详解】解:(1)设数列的公比为,则,由得:,所以.由,得到所以数列的通项公式为.(2)由条件知, 又将以上两式相减得所以.19.的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)若,的面积为,求的周长.【答案】(1);(2)【解析】【分析】(1)根据正弦定理以及两角和的正弦公式即可求出,进而求出;(2)根据余弦定理可得到,再根据三角形面积公式得到,即可求出,进而求出的周长.【详解】解:(1),由正弦定理得:,整理得:,∵在中,,∴,即,∴,即;(2)由余弦定理得:,∴, ∵,∴,∴,∴,∴的周长为.20.已知函数.(1)求的最值;(2)求曲线过点的切线方程.【答案】(1)最小值为,无最大值(2)【解析】【分析】(1)求出函数的定义域,得出导函数,根据导函数得出函数的单调性,即可得出答案;(2)设切点为,根据导数的几何意义得出斜率.根据已知结合斜率的公式即可得出.联立得出方程,求出方程的根,得出切点坐标以及斜率,代入点斜式方程,即可得出答案.【小问1详解】由已知可得,的定义域为,且.当时,,则在上单调递减;当时,,则在上单调递增.所以,在处取得唯一极小值,也是最小值.所以,的最小值为,无最大值.【小问2详解】 设切点为,则根据导数的几何意义可知,曲线在处的斜率,则,所以,,整理可得,.设,则在上恒成立,所以,在上单调递增.又,所以存在唯一解.所以,的解为,切点,此时斜率为,切线方程为,整理可得,切线方程为.21.已知函数.(1)若为的极小值点,求实数的值;(2)已知集合,集合,若,求实数的取值范围.【答案】(1)(2)【解析】【分析】(1)求导,由求出,再进行检验即可;(2)转化为当时,恒有,求导,分与两种情况,求出满足要求, 时不合要求,从而得到答案.【小问1详解】,由题可知,,当时,,当时,;当时,,故满足为极小值点.【小问2详解】由题意,即当时,恒有,即有,显然,,当,即时,恒成立,所以在单调递增,,即时满足恒成立;当即时,由得,其中,由得,所以时,单调递减,所以时,与题设矛盾.综上,的取值范围是.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程 22.在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于、两点,求的值.【答案】(1)直线的普通方程为,圆的直角坐标方程为;(2).【解析】【分析】(1)在直线的参数方程中消去参数可得出直线的普通方程,在圆的极坐标方程两边同时乘以,由可将圆的极坐标方程化为直角坐标方程;(2)设点、对应的参数分别为、,将直线的参数方程代入圆的直角坐标方程,列出韦达定理,利用直线参数方程的几何意义可求得的值.【详解】(1)在直线的参数方程中消去参数,可得直线的普通方程为,在圆的极坐标方程两边同时乘以,可得,由可得圆的直角坐标方程为,即;(2)设点、对应的参数分别为、,将直线的参数方程代入圆的直角坐标方程得,即,,由韦达定理得,,又直线过点,所以.【点睛】本题考查参数方程、极坐标方程与普通方程之间的相互转化,同时也考查了利用直线参数方程的几何意义求值,考查计算能力,属于中等题.选修4-5.:不等式选讲23.已知函数f(x)=2|x+1|+|x-2|. (1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足a+b+c=m,求证:.【答案】(1)3;(2)证明详见解析.【解析】【分析】(1)分段讨论去绝对值可得到值域,从而得到最小值;(2)配凑成形式,再利用均值不等式求最值即可.【详解】(1)当x<-1时,;当–1≤x<2时,;当x≥2时,;综上,f(x)最小值m=3;(2)由(1)知m=3,因为a,b,c均为正实数,且满足a+b+c=3,,当且仅当a=b=c=1时,等号成立,所以即.【点睛】本题考查了分段函数的定义域、值域及求最小值的问题,考查了利用基本不等式求最值的问题,注意等号成立的条件.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
四川省内江市威远中学2022-2023学年高三语文下学期第一次月考试题 (Word版附解析)
四川省内江市威远中学2022-2023学年高三数学(文)下学期第一次月考试题(Word版附解析)
四川省内江市威远中学2022-2023学年高三英语下学期第一次月考试题(Word版附解析)
四川省江油中学2023-2024学年高三文综上学期9月月考试题(Word版附答案)
四川省资阳市雁江区伍隍中学2023-2024学年高三数学(文)上学期9月月考试题(Word版附解析)
四川省 2023-2024学年高三数学(理)上学期9月月考试题(Word版附解析)
四川省 2023-2024学年高三数学(文)上学期9月月考试题(Word版附解析)
四川省内江市威远中学2023-2024学年高三语文上学期9月月考试题(Word版附解析)
四川省内江市威远中学2023-2024学年高三数学(理)上学期9月月考试题(Word版附解析)
四川省内江市威远中学2023-2024学年高二语文上学期第一次月考试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-10-22 02:40:02
页数:18
价格:¥3
大小:1.16 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划