首页

第十二章全等三角形12.2三角形全等的判定第1课时用SSS判定三角形全等课件(人教版八上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/27

2/27

3/27

4/27

剩余23页未读,查看更多内容需下载

12.2三角形全等的判定第1课时用“SSS”判定三角形全等R·八年级上册 新课导入通过上节课的学习,大家知道:两个三角形全等时,三条对应边相等,三组对应角相等,那么判定两个三角形全等,是否一定需要满足六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?从这节课开始,我们来探究全等三角形的判定. 学习目标:1.通过三角形的稳定性,体验三角形全等的“边边边”条件.2.会运用“边边边”定理判定两个三角形的全等. 推进新课∠A=∠A′AB=A′B′已知△ABC≌△A′B′C′,找出其中相等的边与角:思考满足这六个条件可以保证△ABC≌△A′B′C′吗?∠B=∠B′BC=B′C′∠C=∠C′AC=A′C′ 思考如果只满足这些条件中的一部分,那么能保证△ABC≌△A′B′C′吗?追问1当满足一个条件时,△ABC与△A′B′C′全等吗?不一定全等三角形全等的“边边边”条件知识点 ①两边②一边一角③两角两个条件思考如果只满足这些条件中的一部分,那么能保证△ABC≌△A′B′C′吗?追问2当满足两个条件时,△ABC与△A′B′C′全等吗?不一定全等 ①三边②三角③两边一角④两角一边三个条件追问3当满足三个条件时,△ABC与△A′B′C′全等吗?满足三个条件时,又分为几种情况呢?思考如果只满足这些条件中的一部分,那么能保证△ABC≌△A′B′C′吗? 先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?探究 画法:(1)画线段B′C′=BC;(2)分别以B′、C′为圆心,BA、CA为半径画弧,两弧交于点A′;(3)连接线段A′B′,A′C′.A′B′C′ 三边分别相等的两个三角形全等.简写为“边边边”或“SSS”.得出结论思考 作图的结果反映了什么规律?你能用语言描述一下吗?可以得到以下基本事实: 在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SSS).判断两个三角形全等的推理过程,叫做证明三角形全等.AB=A′B′,AC=A′C′,BC=B′C′,∵用符号语言表达: 如图,在△ABC和△DEF中,∵AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF.(特别注意对应的顶点写在对应的位置上.)练习定理的几何表述: 证明:∵D是BC中点,∴BD=DC.在△ABD与△ACD中,∴△ABD≌△ACD(SSS).例 如图,有一个三角形钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.AB=AC,BD=CD,AD=AD,∵ 作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.ODBCA 已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.O′C′A′ODBCA作法:(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′; 作法:(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.O′D′C′A′ODBCA 作法:(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.O′D′B′C′A′ODBCA 作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角. 练习如图,A、D、B、F在一条直线上,BC=DE,AC=EF,BF=AD,求证:△ABC≌△FDE. 随堂演练1.如图,△ABC中,AB=AC,EB=EC,则由SSS可以判定()A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对B基础巩固 2.如图,AB=AD,CB=CD,△ABC与△ADC全等吗?为什么?解:全等.∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS). 3.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.【课本P37练习第1题】 4.工人师傅常用角尺平分一个任意角。做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合.过角尺顶点C的射线OC便是∠AOB的平分线。为什么?【课本P37练习第2题】 6.已知∠AOB,点C是OB边上的一点,用尺规作图,画出经过点C与OA平行的直线.拓展延伸 解:作图如图所示:作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点D,E;(2)以点C为圆心,OD长为半径画弧,交OB于点F;(3)以点F为圆心,DE长为半径画弧,与第2步中所画的弧相交于点P;(4)过C,P两点作直线,直线CP即为要求作的直线. 课堂小结A′B′C′判定两个三角形全等:三边对应相等的两个三角形全等.简写为“边边边”或“SSS”.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-10-19 12:00:02 页数:27
价格:¥2 大小:746.25 KB
文章作者:随遇而安

推荐特供

MORE