福建省2023-2024学年高三上学期第一次质量检测数学试卷
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/21
2/21
3/21
4/21
5/21
6/21
7/21
8/21
9/21
10/21
剩余11页未读,查看更多内容需下载
{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
2023-2024学年第一学期福州市高中毕业班开门考数学试题(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1到2页,第Ⅱ卷3至4页.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将答题卡交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.11.已知复数z满足1i,则在复平面内,z对应的点在zA.第一象限B.第二象限C.第三象限D.第四象限【考查意图】本小题以复数为载体,主要考查复数的基本运算、几何意义等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等数学核心素养,体现基础性.【答案】A.111i【解析】由1i得z,应选A.z1i222.已知集合Axx<1,Bxx>0,则ABA.0,1B.0,C.1,D.,【考查意图】本小题以不等式为载体,主要考查集合运算等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等核心素养,体现基础性.【答案】C.【解析】Ax1<x<1,Bxx>0,故AB(1,),应选C.23.已知点Px,2在抛物线C:y4x上,则P到C的准线的距离为0A.4B.3C.2D.11{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
【考查意图】本小题以抛物线为载体,主要考查抛物线的图象和性质、直线与抛物线的位置关系等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性.【答案】C.2【解析】抛物线y4x的准线为x1,由PC得x1,故P到准线的距离为2,0应选C.4.“二十四节气”是中国古代劳动人民伟大的智慧结晶,其划分如图所示.小明打算在网上搜集一些与二十四节气有关的古诗.他准备在春季的6个节气与夏季的6个节气中共选出3个节气,若春季的节气和夏季的节气各至少选出1个,则小明选取节气的不同情况的种数是A.90B.180C.270D.360【考查意图】本小题以二十四节气为载体,主要考查排列与组合等基础知识;考查运算求解能力、推理论证能力和应用意识;考查数学运算、逻辑推理等核心素养,体现基础性和应用性.【答案】B.【解析】根据题意可知,小明可以选取1春2夏或2春1夏.其中1春2夏的不同情况1221有:C6C690种;2春1夏的不同情况有:C6C690种,所以小明选取节气的不同情况有:9090180种.应选B.35.一个正四棱台形油槽可以装煤油190000cm,其上、下底面边长分别为60cm和40cm,则该油槽的深度为75A.cmB.25cmC.50cmD.75cm4【考查意图】本小题以正四棱台形油槽为载体,主要考查空间几何体的体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和应用性.【答案】D.h22【解析】设正四棱台的高,即深度为hcm,依题意,得19000060406040,3解得h75,应选D.6.一个袋子中有大小和质地相同的4个球,其中有2个红球,2个黄球,每次从中随机摸出1个球,摸出的球不再放回.则第二次摸到黄球的条件下,第一次摸到红球的概率为2{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
1123A.B.C.D.3234【考查意图】本小题主要考查条件概率、全概率公式等基础知识;考查推理论证能力、运算求解能力与创新意识;考查化归与转化思想;考查数学建模、逻辑推理、数据分析等核心素养,体现综合性、应用性与创新性.【答案】C.【解析】解法一:记第i次摸到红球为事件A,摸到黄球为事件B(i1,2),则ii12111PB2PA1PB2A1PB1PB2B1,23232221P(AB)2PABPAPBA1212121,故P(A1B2).应选C.433P(B)32解法二:记第i次摸到红球为事件A,摸到黄球为事件B(i1,2).由抽签的公平ii21221P(AB)2PB,又12性可知2PA1B2,所以P(A1B2).应选C.42433P(B)32157.已知a,bln2,cln5,则eA.a>b>cB.b>c>aC.a>c>bD.c>a>b【考查意图】本小题以数的大小比较为载体,主要考查函数与导数等基础知识;考查运算求解能力、推理论证能力、应用意识;考查数学建模、数学运算、逻辑推理等核心素养,体现基础性、应用性和综合性.【答案】A.1lneln2ln45ln5lnx【解答】解法一:a,bln2,cln5,令fx,ee245x1lnxfx,当x≥e时,fx≤0,故fx在区间e,上单调递减,所以a>b>c.2x10510105解法二:因为2232>255,所以5ln2>ln5,即b>c.x2在同一坐标系中作出函数fx2,gxx的图象,e2如图所示,由图可知,fe<ge,即2<e,所以e21111122e<e2e,即22<ee,所以ln2<lne,即b<a.2eelnx1lnx(令fx,fx,当0xe时,fx0,故fx在区间0,e上2xx1lneln2单调递增,所以aln2b.)ee23{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
综上,a>b>c.应选A.8.若定义在R上的函数fxsinxcosx(>0)的图象在区间0,上恰有5条对称轴,则的取值范围为1721172517253341A.,B.,C.,D.,44444444【考查意图】本小题以三角函数为载体,考查三角函数的图象与性质、三角恒等变换等基础知识;考查抽象概括能力、推理论证能力、应用意识;考查数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性.【答案】A.π【解析】由已知,fx2sinx,4π(4k1)π令x=kπ,kZ,得x,kZ,424(4k1)π依题意知,有5个整数k满足0≤≤π,即0≤4k1≤4,所以k0,1,417212,3,4,则441≤4<451,故≤<,应选A.44二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某市抽查一周空气质量指数变化情况,得到一组数据:80,76,73,82,86,75,81.以下关于这组数据判断正确的有A.极差为13B.中位数为82C.平均数为79D.方差为124【考查意图】本小题主要考查极差、中位数、平均数、方差等基础知识;考查推理论证能力、运算求解能力;考查化归与转化思想;考查数据分析等核心素养,体现基础性.【答案】AC.2210.已知圆M:xy1,直线l:ykx31,则3A.l恒过定点3,1B.若l平分圆周M,则k3C.当k3时,l与圆M相切D.当3<k<3时,l与圆M相交【考查意图】本小题以直线与圆为载体,考查直线的方程、圆的方程、直线与圆的位置关系等基础知识;考查运算求解能力;考查直观想象、逻辑推理等核心素养;体现基础性和综合性.【答案】BC.【解析】依题意,l恒过定点3,1,选项A错误;4{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
3若l平分圆周M,则l经过圆M的圆心0,0,代入直线方程得k,选项B正确;33k1圆心O0,0到l的距离d,当k3时,d1r,l与圆M相切,选项C2k122正确;若l与圆M相交,则d<1,即3k1<k1,即0<k<3,故选项D错误.综上,应选BC.311.已知函数fxx3ax2有两个极值点.则A.fx的图象关于点0,2对称B.fx的极值之和为4C.aR,使得fx有三个零点D.当0<a<1时,f(x)只有一个零点【考查意图】本小题以三次函数为载体,主要考查函数与导数等基础知识;考查运算求解能力、推理论证能力、应用意识;考查数学建模、数学运算、逻辑推理等核心素养,体现基础性、应用性和综合性.【答案】ACD.3【解答】fx的图象可由奇函数gxx3ax的图象向上平移2个单位长度得到,故fx的图象关于点0,2对称,选项A正确.设fx的极值点分别为x,x(x<x),则由对称性可知xx0,故121212fx1fx2224,即fx的极值之和为4,选项B错误.2依题意,方程fx3x3a0有两异根,则a>0,xa,xa,fx在区间12,a上单调递增,在区间a,a上单调递减,在区间a,单调递增.由图象可知,当fx>0>fx时,fx的图象与x轴有3个交点,即fx有3个零点,选项12C正确.当0<a<1时,faaa3aa221aa>0,此时fx只有一个零点,选项D正确.综上,应选ACD.12.已知正四棱柱ABCDABCD的底面边长为2,球O与正四棱柱的上、下底面及侧棱1111都相切.P为平面CDD上一点,且直线BP与球O相切,则1A.球O的表面积为4πB.直线BD与BP夹角等于451C.该正四棱柱的侧面积为162D.侧面ABBA与球面的交线长为2π11【考查意图】本小题以正四棱柱为载体,主要考查球、直线与平面的位置关系等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查化归与转化思想;考查直观想象、逻辑推理等核心素养,体现基础性、应用性和综合性.【答案】BCD.5{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
【解答】如图,设球O与下底面相切于点O,则OO平面ABCD,连接OA,则OAO1111为直线OA与平面ABCD所成的角.因为球O与正四棱柱的侧棱相切,所以其半径ROOOA2,所以S4π28π,四棱柱的侧面积为2422162,故选项11表A错误,C正确.依题意,BB,BP均为球O的切线,BD经过球心O,所以BBDPBD,又11111BD22BB,所以PBDBBD45,选项B正确.111111对于选项D,棱AA的中点F,即球O与棱AA的切点应为11交线上的点,故交线应为过F的圆.截面圆的圆心即为矩形1ABBA的中心E,在Rt△OEF中,OFR2,OEBC1,112所以截面圆半径rEF211,周长为2π,该选项正确.综上,应选BCD.第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a1,2,b1,2,若ab,则实数的值为.【考查意图】本小题以平面向量为载体,主要考查平面向量的基本运算等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理、直观想象等核心素养,体现基础性.【答案】5.【解析】由ab得1220,解得5.14.将圆周16等分,设每份圆弧所对的圆心角为,则sincos的值为.【考查意图】本小题以圆的等分为载体,考查三角恒等变换等基础知识;考查推理论证能力,抽象概括能力;考查逻辑推理等核心素养;体现基础性与应用性.2【答案】.411π2【解析】依题意,得,所以sincossin2sin.8224415.已知定义域为R的函数fx同时具有下列三个性质,则fx.(写出一个满足条件的函数即可)①fxyfxfy;②fx是偶函数;③当xy>0时,fxfy<0.6{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
【考查意图】本小题以函数的性质为载体,考查函数的奇偶性、函数与导数等基础知识;考查推理论证能力;考查逻辑推理等核心素养;体现基础性、综合性与应用性.【答案】x(答案不唯一,kxk<0均可).22xy16.已知双曲线C:1(a>0,b>0)的左焦点为F,两条渐近线分别为l,l.点2212abA在l上,点B在l上,且点A位于第一象限,原点O与B关于直线AF对称.若12AF2b,则C的离心率为.【考查意图】本小题以双曲线为载体,主要考查双曲线的离心率、双曲线的图象和性质、直线与双曲线的位置关系等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性.【答案】2.b【解答】依题意,l的方程为yx,AFl,设垂足为P,则FPb.因为12aAF2b2FP,所以点F,A关于直线l对称,FOPAOP,又l,l关于y轴对称,21221bb所以l的倾斜角为18060,故tan603,所以离心率e12.123aa四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知等比数列a的前n项和为S,且aS2.nnn1n(1)求a的通项公式;n(2)若bloga,求数列b的前n项和T.n22n1nn【命题意图】本小题主要考查等差数列、等比数列、递推数列及数列求和等基础知识,考查运算求解能力、逻辑推理能力和创新能力等,考查化归与转化思想、分类与整合思想、函数与方程思想、特殊与一般思想等,考查逻辑推理、数学运算等核心素养,体现基础性和综合性.满分10分.aS2,【解答】(1)解法一:由aS2得21········································1分n1naS2,32设等比数列a的公比为q,na1q12,所以················································································2分2a1qq12,a2,a2,11解得或(舍去).··························································4分q2,q07{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
n所以a2.··························································································5分n2n1(2)blogalog22n1,························································7分n22n12故b1,bb2n12(n1)12(n≥2),1nn1所以b是首项为1,公差为2的等差数列,nnb1bnn12n12所以Tn.······················································10分n22解法二:(1)因为aS2,①n1n所以当n≥2时,aS2,②·······························································1分nn1①-②得a2a,················································································2分n1nan1所以等比数列a的公比q2.························································3分nan由①式得aa2,得a2,·································································4分211n所以a2.··························································································5分n(2)Tbbbn12nlogalogaloga212322n1log2a1a3a2n1········································································7分132n1log2212n1nlog2222n.·······················································································10分18.(本小题满分12分)π记△ABC的内角A,B,C所对的边分别为a,b,c,已知b2,B.6(1)若c2,求a;(2)求△ABC面积的最大值.【命题意图】本小题主要考查正弦定理、余弦定理及三角恒等变换等基础知识,考查逻辑推理能力、运算求解能力等,考查化归与转化思想、函数与方程思想、数形结合思想等,考查数学运算、逻辑推理等核心素养,体现基础性和综合性.满分12分.π【解答】解法一:(1)因为b2,c2,B,6222根据余弦定理得bac2accosB,2π22所以2a24acos,···································································3分68{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
2即a23a20,解得a31.······················································································6分222(2)根据余弦定理,得bac2accosB,22π22所以2ac2accosac3ac≥2ac3ac23ac,·················8分6(当且仅当ac31时取等号),···························································9分2即ac≤223,2311π1123所以△ABC面积S△ABCacsinBacsinac≤223,22644223即△ABC面积的最大值为.·························································12分2π解法二:(1)因为b2,c2且B,6bc根据正弦定理,得,sinBsinC222所以,即sinC,·····························································1分πsinC2sin6π5π因为cb,所以CB,所以C,66π3π所以C或C,··············································································2分44πππ123262当C时,sinAsinBCsin,46422224ab根据正弦定理,得,sinAsinB622bsinA4所以a31;······················································4分sinBπsin63ππ3π123262当C时,sinAsinBCsin,46422224ab根据正弦定理,得,sinAsinB622bsinA4所以a31;sinBπsin69{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
综上,a31.···················································································6分(2)略,同解法一.π解法三:(1)因为b2,c2且B,6bc根据正弦定理,得,sinBsinC222所以,即sinC,·····························································1分πsinC2sin6π5π因为cb,所以CB,所以C,66π3π所以C或C,··············································································2分44πππ7π当C时,AπBCπ,46412ab根据正弦定理,得,sinAsinB7π2sinbsinA12ππππππ所以a22sin22sincoscossinsinBπ343434sin6ππππ22sincoscossin31;······················································4分34343ππ3ππ当C时,AπBCπ,46412ab根据正弦定理,得,sinAsinBπ2sinbsinA12ππππππ所以a22sin22sincoscossinsinBπ343434sin6ππππ22sincoscossin31;3434综上,a31.···················································································6分acb2(2)根据正弦定理,得22,sinAsinCsinBπsin6所以a22sinA,c22sinC,10{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
25π13即ac22sinAsinC8sinAsinA8sinAcosAsinA62221cos2A2sin2A43sinA2sin2A432sin2A23cos2A23213π4sin2Acos2A234sin2A23,··································8分2235πππ4π因为0A,所以2A,6333ππ5ππ所以当2A,即A时,sin2A取得最大值为1,即ac最大值为423,3212311π1123所以△ABC面积SacsinBacsinac≤423,△ABC22644223即△ABC面积的最大值为.·························································12分219.(本小题满分12分)国际上常采用身体质量指数(BodyMassIndex,缩写BMI)来衡量人体肥瘦程度,其体重(单位:kg)计算公式是BMI.为了解某公司员工的身体肥瘦情况,研究人员从该公22身高(单位:m)司员工体检数据中,采用比例分配的分层随机抽样方法抽取了50名男员工、30名女员工的身高和体重数据.计算得到他们的BMI值,并根据“中国成人的BMI数值标准”简称“指标”整理得到如下结果:指标偏瘦正常偏胖肥胖人数(BMI<18.5)(18.5≤BMI<24)(24≤BMI<28)(BMI≥28)性别男12171110女91173(1)若该公司男员工有1500名,则该公司共有多少名员工?(2)以频率估计概率,分别从该公司男、女员工中各随机抽取2名员工,求抽到的员工中至少有一名是肥胖的概率.【命题意图】本小题主要考查分层抽样、独立事件的概率、互斥事件、对立事件的概率等基础知识;考查数学建模能力,运算求解能力,逻辑推理能力,创新能力以及阅读能力等;考查统计与概率思想、分类与整合思想等;考查数学抽象,数学建模和数学运算等核心素养;体现应用性和创新性.满分12分.【解】(1)设该公司共有x名员工,150050依题意得,·········································································3分x503011{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
解得x2400,所以该公司共有2400名员工.··································································5分404(2)依题意,事件“抽到一名男员工不为肥胖”的概率为,事件“抽到一名女505279员工不为肥胖”的概率为,···································································7分30104416由事件的独立性,得抽到的两个男员工都不存在肥胖的概率为,·········8分55259981抽到的两个女员工都不存在肥胖的概率为,·································9分1010100设事件M为“抽到的员工中至少有一名是肥胖”,则事件M为“抽到的员工都不存在肥胖”,8116324所以PM,···································································10分10025625324301所以PM1,625625301所以抽到的员工中至少有一名是肥胖的概率为.·····································12分62520.(本小题满分12分)如图,在底面为菱形的四棱锥MABCD中,ADBDMB2,MAMD2.(1)求证:平面MAD平面ABCD;(2)已知MN2NB,求直线BN与平面ACN所成角的正弦值.【命题意图】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,直线与平面所成角等基础知识;考查空间想象能力,逻辑推理能力,运算求解能力等;考查化归与转化思想,数形结合思想,函数与方程思想等;考查直观想象,逻辑推理,数学运算等核心素养;体现基础性和综合性.满分12分.【解答】(1)取AD的中点为O,连结OM,OB,因为四边形ABCD是为菱形,且ADBD2,所以△ABD为正三角形,所以BOAD,且BO3.因为MAMD2,所以MOAD,·····················································2分12{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
2222所以MOMAAO211,222又因为MB2,所以MOBOMB,所以MOBO,···················································································4分因为ADBOO,AD平面ABCD,BO平面ABCD所以MO平面ABCD,········································································5分又因为MO平面MAD,所以平面MAD平面ABCD.································································6分(2)由(1)知,OA,OB,OM两两垂直,故以O为坐标原点,分别以OA,OB,OM为x,y,z轴的正方向建立如图所示的空间直角坐标系Oxyz.231则A1,0,0,B0,3,0,C2,3,0,M0,0,1,N0,,,·························7分3331所以CA3,3,0,CN2,,,CB2,0,0,33设平面ACN的法向量为nx,y,z,3x3y0,nCA0,则即31nCN0,2xyz0,33取x1,则n1,3,3.·····································································9分因为BM0,3,1,BMn33313则cosBM,n,··············································11分BMn21313313所以直线BN与平面ACN所成角的正弦值为.···································12分1321.(本小题满分12分)13{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
22xy已知椭圆E:1的右焦点为F,左、右顶点分别为A,B.点C在E上,43P4,yP,Q4,yQ分别为直线AC,BC上的点.(1)求yy的值;PQ(2)设直线BP与E的另一个交点为D,求证:直线CD经过F.【命题意图】本小题主要考查椭圆的标准方程及简单几何性质,直线与圆、椭圆的位置关系,平面向量等基础知识;考查运算求解能力,逻辑推理能力,直观想象能力和创新能力等;考查数形结合思想,函数与方程思想,化归与转化思想等;考查直观想象,逻辑推理,数学运算等核心素养;体现基础性,综合性与创新性.满分12分.【解答】(1)依题意,A2,0,B2,0.···············································1分22xy11设Cx,y,则1,1143y6y11直线AC方程为yx2,令x4得y,·····························2分Px2x211y2y11直线BC方程为yx2,令x4得y,·····························3分Qx2x211212y1所以yyPQ2x412x112314········································································4分2x419,即yy的值为9.·············································································5分PQ(2)设Dx,y,P4,t,则22tt直线AP方程为yx2,直线BP的方程为yx2,62tyx2,2222由6得t27x4tx4t1080,···································6分3x24y212224t108542tt18t所以2x,即x,故yx2.················7分1212112t2727t627ttyx2,2222由2得t3x4tx4t120,3x24y212224t122t6t6t所以2x,即x,故yx2.·····················8分2222222t3t32t314{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
所以x1yx1y122122273t6tt918t222227tt3t327t226t273t3t270,···························································10分22t327t又F1,0,所以向量FCx1,y与FDx1,y共线,···················11分1122所以直线CD经过F.··········································································12分解法二:(1)依题意,A2,0,B2,0.···············································1分22xy11设Cx,y,则1,1143yy11所以kk·····································································2分ACBCx2x2112y12x412x1314·······································································3分2x413.············································································4分43yPyQ即kk,故yy的值为9.·····································5分APBQPQ44242(2)设Cx,y,Dx,y,P4,t.1122要证直线CD经过F1,0,只需证向量FCx1,y与FDx1,y共线,··································6分1122即证x1yx1y.(*)·······························································7分1221222202xyy3x2y1111P因为1,所以k,AC4343x24y611y3x2y22P同理可得k,···················································9分BDx24y222kACx22y11所以,即xy3xy6y2y0,①122112kBDx12y23同理可得3xyxy2y6y0,②·················································10分122112①-②得4xy4xy4y4y0,即x1yx1y.···················11分1221121221所以(*)式成立,命题得证.·······························································12分15{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
22.(本小题满分12分)已知函数fxlnxa,记曲线yfx在点x,fx处的切线为l,l在x轴上的11截距为x2(x2>0).(1)当xe,a1时,求切线方程;1aa(2)证明:xe≥xe.12【命题意图】本小题主要考查导数,函数的单调性、零点、不等式等基础知识;考查逻辑推理能力,直观想象能力,运算求解能力和创新能力等;考查函数与方程思想,化归与转化思想,分类与整合思想等;考查逻辑推理,直观想象,数学运算等核心素养;体现基础性、综合性和创新性.满分12分.1【解答】(1)f(x),··········································································1分x当xe,a1时,fxlne10,即切点为e,0,································2分111所以所求切线斜率kfe,································································3分e11所以所求的切线方程为y(xe),即yx1.········································4分ee(2)由于fxlnxa,111所以切线l的方程为y(lnxa)(xx).··············································5分11x11令y0,得(lnx1a)(xx1),解得x2x1x1(lnx1a).(*)·················6分x1a1由x20,得x1e.·············································································7分构造函数gxxx(lnxa),所以gxalnx,aa所以当0<x<e时,gx>0,gx单调递增;当x>e时,gx<0,gx单aa调递减.故gxgee.maxa所以x2e.···························································································8分a若x1e,由(*)式知x1x2,a所以x1x2e,aa故x1ex2e.··············································································10分aaaaaa若x1>e,则x1ex2e(x1e)(ex2)(x1x2)2e,16{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
aaa所以x1ex2e2x1x1(lnx1a)2e.aaa1构造函数(x)2xx(lnxa)2e(exe),所以(x)(1a)lnx0,aa1故(x)在区间(e,e)上单调递增,a所以(x)(e)0,a所以2x1x1(lnx1a)2e0,即aaaa所以x1ex2e0,即x1ex2e.aaa综上,不等式成立x1ex2e成立(当且仅当x1e时取等号).············12分17{#{QQABKYaAggCgAAAAARgCEQUgCEGQkAGAAAgOwFAEoAIBCBNABAA=}#}
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)