首页

第1章二次函数知识归纳(湘教版九下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

二次函数二次函数及其图像二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为y=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般的,自变量x和因变量y之间存在如下关系:一般式  y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(b2-4ac)/4a);顶点式  y=a(x-h)2+k(a≠0,a、h、k为常数)或y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式  y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];  重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。在平面直角坐标系中作出二次函数y=x2的平方的图像,  可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。 轴对称  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。  对称轴与抛物线唯一的交点为抛物线的顶点P。  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)顶点  2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b2)/4a)  当-b/2a=0时,P在y轴上;当Δ=b2-4ac=0时,P在x轴上。开口  3.二次项系数a决定抛物线的开口方向和大小。  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。  |a|越大,则抛物线的开口越小。3 决定对称轴位置的因素  4.一次项系数b和二次项系数a共同决定对称轴的位置。  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号  当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时  (即ab<0),对称轴在y轴右。  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的  斜率k的值。可通过对二次函数求导得到。决定抛物线与y轴交点的因素  5.常数项c决定抛物线与y轴交点。  抛物线与y轴交于(0,c)抛物线与x轴交点个数  6.抛物线与x轴交点个数  Δ=b2-4ac>0时,抛物线与x轴有2个交点。  Δ=b2-4ac=0时,抛物线与x轴有1个交点。  Δ=b2-4ac<0时,抛物线与x轴没有交点。  当a>0时,函数在x=-b/2a处取得最小值,当a<0时,函数在x=-b/2a处取得最大值  当b=0时,抛物线的对称轴是y轴,  7.特殊值的形式  ①当x=1时y=a+b+c  ②当x=-1时y=a-b+c  ③当x=2时y=4a+2b+c  ④当x=-2时y=4a-2b+c用函数观点看一元二次方程1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。实际问题与二次函数3 在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-14 18:30:02 页数:3
价格:¥1 大小:39.00 KB
文章作者:随遇而安

推荐特供

MORE