首页

第4章一次函数知识点归纳(湘教版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

一次函数知识点总结一、本节学习指导本节的知识相当重要,同学们要引起重视,如果给出一个式子让其判断是不是一次函数,判断方法我们要掌握。关于一次函数的解析式的几种求法我们要会,特别是其中最常用的“待定系数法”。本节有配套免费学习视频。二、知识要点1.一次函数:形如y=kx+b(k≠0,k,b为常数)的函数。注意:(1)要使y=kx+b是一次函数,必须k≠0。如果k=0,则kx=0,y=kx+b就不是一次函数;  (2)当b=0时,y=kx,y叫x的正比例函数。2.图象:一次函数的图象是一条直线。【重点】(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-b/k,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。3.性质:【重点】 (1)图象的位置:      (2)增减性  k>0时,y随x增大而增大k<0时,y随x增大而减小3 4.求一次函数解析式的方法【重点】  (1)由已知函数推导或推证  (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。  (3)用待定系数法求函数解析式。(最常用)  “待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:  ①利用一次函数的定义  x的系数不为0,x的最高次数为1,构造方程组。  ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。  ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。④利用题目已知条件直接构造方程。例:(1)若函数是正比例函数,则k的值为( )(2)已知是正比例函数,且y随x的增大而减小,则m的值为_______.(3)当m=_______时,函数是一次函数. 解:  (1)由于y=(k+1)x+k²-1是正比例函数,  ∴,∴k=1,∴应选B.  (2)是正比例函数的条件是:m2-3=1且2m-1≠0,要使y随x的增大而减小还应满足条件2m-1<0,综合这两个条件得当即m=-2时,是正比例函数且y随x的增大而减小.  (3)根据一次函数的定义可知,是一次函数的条件是:3 解得m=1或-3,故填1或-3.三、经验之谈:1.判断一个式子是不是一次函数,首先看“k”是否等于零,其次看最高次项是否等于1次。2.给出一个一次函数,我们要能迅速的画出图像,一看朝向,如果k>0,图像“向上爬”,k<0,图像“向下滑”;二看截距,截距就是|b|,如果b>0,图像和y轴的焦点在y的正半轴,如果b<0,则在y的负半轴。3.一次函数的增减性很简单,当函数图像“向上爬”时,y随x的增大而增大;当函数图象“向下滑”时,y随x的增大而减小。3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-12 07:30:02 页数:3
价格:¥1 大小:45.50 KB
文章作者:随遇而安

推荐特供

MORE