首页

第23章解直角三角形23.1锐角的三角函数23.1.1锐角的三角函数第1课时正切教案(沪科版九上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

23.1.1锐角的三角函数第1课时正切教学目标1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重难点【教学重点】理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。【教学难点】计算一个锐角的正切值的方法。课前准备课件、教具等。教学过程一、情境导入如图,这种方法可以用来测量物体的高度.由图我们想到在直角三角形中,它的边与角有什么关系?通过本章的学习,你就会明白其中的道理,并能应用所学知识解决相关问题.二、合作探究探究点一:正切的定义【类型一】根据已知条件求锐角的正切值例1如图,在△ABC中,∠C=90°,AC+BC=7(AC>BC),AB=5,求tanB的值.解析:要求tanB的值,根据锐角三角函数的定义,则需要求出对边AC和邻边BC的长.已知斜边AB=5,且AC+BC=7,所以可以根据勾股定理进行计算.解:设AC=x,则BC=7-x.根据勾股定理,得x2+(7-x)2=52,解得x=3或4.∵AC>BC,∴AC=4,BC=3.∴tanB==.方法总结:本题的解题思路是根据已知条件确定∠B的对边和邻边的长,采用了一般的解题方法,并体现了方程思想在求三角函数值中的应用.实际上,根据以往做题的经验,不通过计算,直接观察就可以解决.因为斜边是5,且两条直角边的和为7,所以两条直角边的长分别是4和3.【类型二】已知锐角的正切值求解其他问题例2在Rt△ABC中,∠C=90°,tanA=0.75,△ABC的周长为24.求△ABC的面积.解析:因为△ABC为直角三角形,所以要求它的面积可求两直角边AC和BC的长.又tanA-2- ==,AC+BC+AB=24,且AB2=AC2+BC2,故可求AC和BC的长,从而可求面积.解:∵∠C=90°,tanA=0.75,∴tanA==.设BC=3k,则AC=4k,∴AB===5k.∵AC+BC+AB=24,∴4k+3k+5k=24,∴k=2.∴AC=8,BC=6.∴S△ABC=AC·BC=×8×6=24.方法总结:题目中已知锐角的正切值,通常利用正切的概念将其转化为边的比值,再根据周长求出各边的长度.这里采用了设参数(k)的方法.探究点二:坡度、坡角例3如图所示,梯形护坡石坝的斜坡AB的坡度i=1∶3,坝高BC=2米,则斜坡AB的长是(  )A.2米B.2米C.4米D.6米解析:先由i==,BC=2米,求出AC,再利用勾股定理求出AB的长.∵∠ACB=90°,i=1∶3,∴i==.∵BC=2米,∴AC=3BC=3×2=6(米).∴AB===2(米).故选B.方法总结:理解坡度的概念是解决与坡度有关的计算题的关键.三、板书设计正切教学反思注重学生对锐角的正切概念的理解,引导学生积极主动地参与正切概念的探索过程.加强学生对数学思想方法的理解和应用,注意数形结合思想的应用.培养学生熟练运用方程思想求直角三角形中的某些未知元素的能力,并注意联系实际,提高运用数学知识解决实际问题的能力.-2-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-10 00:03:02 页数:2
价格:¥1 大小:59.65 KB
文章作者:随遇而安

推荐特供

MORE