北京市东城区2023届高三数学二模试题(Word版附解析)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
北京市东城区2022-2023学年度第二学期高三综合练习(二)数学2023.5本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则()A.⫋B.C.D.【答案】A【解析】【分析】用列举法写出集合A,利用集合间的基本关系判断.【详解】,,则⫋.故选:A2.已知椭圆的一个焦点的坐标是,则实数的值为()A.B.C.D.【答案】C【解析】【分析】根据椭圆的标准方程,结合,即可求解.【详解】由条件可知,,,,所以,得,故选:C3.已知数列中,,,为其前项和,则()A.B.C.D.
【答案】B【解析】【分析】由已知得到,判定该数列为等比数列,进而利用求和公式计算.【详解】由得,又∵,∴数列为首项为1,公比为的等比数列,∴,故选:B.4.在复平面内,是原点,向量对应的复数是,将绕点按逆时针方向旋转,则所得向量对应的复数为()A.B.C.D.【答案】A【解析】【分析】由复数的几何意义结合图象可得.【详解】如图,由题意可知,与轴夹角为,绕点逆时针方向旋转后到达轴上点,又,所以的坐标为,所以对应的复数为.故选:A.5.已知点在圆上,过作圆的切线,则的倾斜角为()A.B.C.D.
【答案】D【解析】【分析】先根据点在圆上,求出,考虑的斜率不存在和存在两种情况,结合点到直线距离列出方程,求出斜率和倾斜角.【详解】由题意得,当的斜率不存在时,此时直线方程为,与圆相交,不合题意,当的斜率存在时,设切线的方程为,则,解得,设的倾斜角为,故的倾斜角为.故选:D6.某社区计划在端午节前夕按如下规则设计香囊:在基础配方以外,从佩兰、冰片、丁香、石菖蒲这四味中药中至少选择一味添加到香囊,则不同的添加方案有()A.种B.种C.种D.种【答案】C【解析】【分析】分四种情况,利用分类计数原理即可求出结果.【详解】从佩兰、冰片、丁香、石菖蒲这四味中药中选一种,有种,从佩兰、冰片、丁香、石菖蒲这四味中药中选二种,有种,从佩兰、冰片、丁香、石菖蒲这四味中药中选三种,有种,从佩兰、冰片、丁香、石菖蒲这四味中药全选,有种,所以从佩兰、冰片、丁香、石菖蒲这四味中药中至少选一种,共有种,故选:C.7.设函数,若为增函数,则实数的取值范围是()A.B.C.D.【答案】B
【解析】【分析】首先分析函数在各段函数的单调性,依题意可得且,结合与的函数图象及增长趋势求出参数的取值范围.【详解】因为,当时函数单调递增,又在上单调递增,在上单调递减,要使函数为增函数,则且,又函数与在上有两个交点和,且的增长趋势比快得多,与的函数图象如下所示:所以当时,当时,当时,所以,即实数的取值范围是.故选:B8.“”是“函数为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】利用,得出,从而求出,再利用偶函数的定义进行判断即可得出充分性成立,再利用,得出,从而判断必要性成立,从而得出结果.详解】若,得到,所以,当时,,当时,,
即或,当时,恒有,当时,,所以,若,则为偶函数,若为偶函数,则,所以,化简得,所以,故选:C.9.已知三条直线,,将平面分为六个部分,则满足条件的的值共有()A.个B.2个C.个D.无数个【答案】C【解析】【分析】考虑三条直线交于一点或与或平行时,满足条件,求出答案.【详解】当三条直线交于一点时,可将平面分为六个部分,联立与,解得,则将代入中,,解得,当与平行时,满足要求,此时,当与平行时,满足要求,此时,综上,满足条件的的值共有3个.故选:C10.设,其中为自然对数的底数,则()A.B.C.D.【答案】A【解析】【分析】构造函数,利用导数讨论其单调性,然后可比较a,b;构造函数,利用导数讨论其单调性,然后可比较b,c,然后可得.
【详解】令,则,当时,,单调递增,所以,即,令,则,当时,,单调递减,所以,即所以.故选:A第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知向量满足,与的夹角为,则______;______【答案】①.1②.2【解析】【分析】根据给定条件,利用数量积的定义及运算律求解作答.【详解】因为向量满足,与的夹角为,所以,.故答案为:1;212.函数在一个周期内的部分取值如下表:则的最小正周期为_______;_______.【答案】①.②.##0.5【解析】【分析】先利用图表求出最小正周期,进而求出,得到,再将
代入即可求出结果.【详解】由图表知,当时,,当时,,所以,即,又,,所以得到,又由,得到,又,所以,故,所以,故答案为:,.13.若,则实数的一个取值为__________.【答案】(答案不唯一)【解析】【分析】根据题意,由交集的定义可知不等式的解集为的子集即可满足题意.【详解】因为,且当时,即时,,当时,即时,才有可能使得,当的两根刚好是时,即,此时的解集为刚好满足,所以,所以实数的一个取值可以为.故答案为:14.如图,在正方体中,是的中点,平面将正方体分成体积分别为,()的两部分,则_______
【答案】【解析】【分析】利用线面平行的性质,得出线线平行,从而求作出平面与平面的交线,进而得出平面分正方体为两部分,再利用棱台的体积公式即可求出结果.【详解】取的中点,连,因为平面,故平行于平面与面的交线,又分别为的中点,易知,即平面平面,故平面分正方体为两部分,设正方体的边长为2,则正方体的体积为8,,故,故答案为:.15.定义在区间上的函数的图象是一条连续不断的曲线,在区间上单调递增,在区间上单调递减,给出下列四个结论:①若为递增数列,则存在最大值;②若为递增数列,则存在最小值;
③若,且存在最小值,则存在最小值;④若,且存在最大值,则存在最大值.其中所有错误结论的序号有_______.【答案】①③④【解析】【分析】结合函数的单调性判断最值,即可判断①②,利用取反例,判断③④.【详解】①由条件可知,函数区间上单调递增,在区间上单调递减,那么在区间,函数的最大值是,若数列为递增数列,则函数不存在最大值,故①错误;②由条件可知,函数在区间上单调递增,在区间上单调递减,若为递增数列,那么在区间的最小值是,且为递增数列,所以函数在区间的最小值是,故②正确;③若,取,,则,存在最小值,但此时的最小值是的最小值,函数单调递减,无最小值,故③错误;④若,取,则恒成立,则有最大值,但的最大值是的最大值,函数单调递增,无最大值,故④错误故答案为:①③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.
16.在中,.(1)求;(2)若,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求及的面积.条件①:;条件②:;条件③:.【答案】(1)(2)答案见解析【解析】【分析】(1)利用正弦定理和二倍角公式求解即可;(2)结合正弦定理和余弦定理求解即可;【小问1详解】由正弦定理得,得,,因为,所以则.所以,所以.【小问2详解】选条件①:因为,由正弦定理得,
由余弦定理得,解得,则,解得,所以存在且唯一确定,则.选条件②:,已知由正弦定理得,因为,所以,,所以存在且唯一确定,则.选条件③:,由余弦定理得,即,所以,即,因为,所以不存在使得存在.17.如图,直角三角形和等边三角形所在平面互相垂直,,是线段上一点.
(1)设为的中点,求证:;(2)若直线和平面所成角的正弦值为,求的值.【答案】(1)证明见解析(2)【解析】【分析】(1)要证明线线垂直,利用面面垂直的性质定理,转化为证明平面;(2)首先设,,再以的中点为原点,建立空间直角坐标系,根据线面角的向量公式,列式求解.小问1详解】由题设知因为平面平面,平面平面,,所以平面.因为平面,所以.因为为等边三角形,是的中点,所以.因为,平面,所以平面.所以.【小问2详解】设,.取的中点,的中点,连接,,则,.由(I)知平面,所以平面,
所以,.如图建立空间直角坐标系,则,,,.所以,,,,.设平面的法向量为,则即令,则,.于是.因为直线和平面所成角的正弦值为,所以,整理得,解得或.因为,所以,即.18.某数学学习小组的7名学生在一次考试后调整了学习方法,一段时间后又参加了第二次考试.两次考试的成绩如下表所示(满分100分):学生1学生2学生3学生4学生5学生6学生7第一次82897892926581第二次83907595936176
(1)从数学学习小组7名学生中随机选取1名,求该名学生第二次考试成绩高于第一次考试成绩的概率;(2)设表示第名学生第二次考试成绩与第一次考试成绩的差.从数学学习小组7名学生中随机选取2名,得到数据,定义随机变量,如下:(i)求的分布列和数学期望;(ii)设随机变量,的的方差分别为,,试比较与的大小.(结论不要求证明)【答案】(1)(2)(i)分布列见解析,;(ii).【解析】【分析】(1)利用古典概型直接计算即可;(2)(i)列出变量X的取值,分别求出对应的概率,列出分布列,利用公式直接求解数学期望即可;(ii)计算方差,利用方差的含义直接判断即可.【小问1详解】根据表中数据,可知这7名学生中有4名学生的第二次考试成绩高于第一次考试成绩,分别是学生1,学生2,学生4,学生5,则从数学学习小组7名学生中随机选取1名,该名学生第二次考试成绩高于第一次考试成绩的概率为【小问2详解】(i)随机变量可能的取值为0,1,2.这7名学生第二次考试成绩与第一次考试成绩的差分别为1,1,,3,1,,.时,若,有,,共3种,若,有,共2种,
若,有,,,共4种,故;时,若,有,,共3种,若,有,,共3种,故;时,若,有,,,共4种,若,有共1种,若,有共1种,故.则随机变量的分布列为:012所以的数学期望.(ii)由(i)知,这7名学生第二次考试成绩与第一次考试成绩的差分别为1,1,,3,1,,.随机变量可能的取值为0,1,2,3.时,若,有,,共3种,若,有,共2种,故;时,若,有,,,共4种,故;
时,若,有,,共3种,若,有,,共3种,故;时,若,有,,,共4种,若,有共1种,若,有共1种,故.则随机变量的分布列为:0123所以的数学期望.所以,因为,所以.19.已知焦点为的抛物线经过点.(1)设为坐标原点,求抛物线的准线方程及△的面积;(2)设斜率为的直线与抛物线交于不同的两点,若以为直径的圆与抛物线的准线相切,求证:直线过定点,并求出该定点的坐标.【答案】(1)准线为,(2)证明见解析,定点.【解析】【分析】(1)由点在抛物线上代入求参数,写出抛物线方程,进而得准线方程,最后求△的面积;(2)设为,联立抛物线并应用韦达定理、中点公式得的中点N点横坐标,根据到准线的距离等于列方程得,即可证结论并确定定点坐标.
【小问1详解】因为抛物线过点,所以,即.故抛物线的方程为,焦点,准线方程为.所以【小问2详解】设直线的方程为.由得:,又有.设则,.设的中点为,则.所以到准线的距离,,依题意有,即,整理得,解得,满足.所以直线过定点.20.已知函数.(1)求曲线在点处的切线方程;(2)求在区间上的最大值;(3)设实数使得对恒成立,写出的最大整数值,并说明理由.
【答案】(1)(2)(3),理由见解析【解析】【分析】(1)求出函数在处的导数,即切线斜率,求出,即可得出切线方程;(2)求出函数在区间上的单调性,求出最值即可;(3)将不等式等价转化为在上恒成立.构造函数,利用导数求出函数的单调性和最小值,进而得证.【小问1详解】因为,所以,则,又,所以曲线在点处的切线方程为.【小问2详解】令,则,当时,,在上单调递增.因为,,所以,使得.所以当时,,单调递减;当时,,单调递增,又,,所以.【小问3详解】满足条件的的最大整数值为.理由如下:不等式恒成立等价于恒成立.令,
当时,,所以恒成立.当时,令,,,与的情况如下:1所以,当趋近正无穷大时,,且无限趋近于0,所以的值域为,因为,所以的最小值小于且大于.所以的最大整数值为.21.已知有穷数列中的每一项都是不大于的正整数.对于满足的整数,令集合.记集合中元素的个数为(约定空集的元素个数为0).(1)若,求及;(2)若,求证:互不相同;(3)已知,若对任意的正整数都有或,求的值.【答案】(1),.(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到及;(2)先得到,故,再由得到,从而证明出结论;(3)由题意得或,令,得到或,当时得到
,当时,考虑或两种情况,求出答案.【小问1详解】因为,所以,则;【小问2详解】依题意,则有,因此,又因为,所以所以互不相同.【小问3详解】依题意由或,知或.令,可得或,对于成立,故或.①当时,,所以.②当时,或.当时,由或,有,同理,所以.当时,此时有,令,可得或,即或.令,可得或.令,可得.
所以.若,则令,可得,与矛盾.所以有.不妨设,令,可得,因此.令,则或.故.所以.综上,时,.时,.时,.【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)