首页

第18章平行四边形18.2第1课时平行四边形的判定定理1,2教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

18.2 平行四边形的判定第1课时 平行四边形的判定定理1,21.掌握平行四边形的判定定理,能根据已知条件选择合适的判定定理判定一个四边形是平行四边形;(重点)2.能够灵活运用平行四边形的性质定理和判定定理进行简单的推理证明.(难点)一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等(或平行)的四边形是平行四边形如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.探究点二:一组对边平行且相等的四边形是平行四边形如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由. 解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB.根据“一组对边平行且相等的四边形是平行四边形”可证出结论.解:四边形ABCD是平行四边形.理由如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:根据题设条件,通过证明三角形全等,得出等量关系,继而证明四边形是平行四边形是判定时的一般解题思路.探究点三:平行四边形的判定定理1,2的应用如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF;(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS”可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF.再由BE⊥AC,DF⊥AC得BE∥DF,即可得出四边形BFDE是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,∴△ABE≌△CDF(AAS);(2)解:四边形BFDE是平行四边形.理由如下:∵△ABE≌△CDF,∴BE=DF.又BE⊥AC于点E,DF⊥AC于点F,∴BE∥DF.∴四边形BFDE是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用一组对边平行且相等可判定四边形是平行四边形.三、板书设计1.平行四边形的判定定理1,2两组对边分别相等(或平行)的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.2.平行四边形的判定定理的综合应用在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-06-16 07:55:02 页数:2
价格:¥1 大小:598.10 KB
文章作者:随遇而安

推荐特供

MORE