首页

第9章多边形9.3.2用多种正多边形铺设地面教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

9.3用正多边形铺设地面9.3.2用多种正多边形铺设地面1.通过用两种以上正多边形拼地板,提高学生观察、分析、概括、抽象等能力.(重点)2.寻找用哪几种正多边形能铺满地板.(难点) 一、情境导入上一节我们知道用一种(正三角形,正方形,正六边形)正多边形能铺满地面,那么我们能用正三角形和正六边形两种图形铺满地面吗?为什么?二、合作探究探究点:用两种或两种以上的正多边形作平面镶嵌下列四组多边形中,能密铺地面的是(  )①正六边形与正三角形;②正八边形与正方形;③正三角形与正方形.A.①②③B.②③C.①②D.③解析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解:①两个正六边形与两个正三角形即可密铺;②正八边形一个内角135°,两个正八边形与一个正方形可密铺;③三个正三角形与两个正方形可密铺.故选:A.方法总结:计算出多边形内角,根据平铺定义即可.设在一个顶点周围有a个正三角形,b个正十二边形,能铺满地面,则a=________,b=________.解析:正三角形每个内角是60°,正十二边形的每个内角是150°.根据在一个拼接点处内角和恰好是360°可知,正三角形和正十二边形的个数满足60a+150b=360,即2a+5b=12.若在一个顶点周围有1个正三角形,则2+5b=12,解得b=2;若在一个顶点周围有2个正三角形,则2×2+5b=12,解得b=,正多边形的个数应该是正整数,所以这种情况不符合题意;若在一个顶点周围有3个正三角形,则2×3+5b=12,解得b=,不符合题意;若在一个顶点周围有4个正三角形,则2×4+5b=12,解得b=,不符合题意.只有a=1,b=2符合题意.故答案为1,2.方法总结:抓住一个拼接点,看几种不同正多边形在同一个拼接点处能否拼出360°.如果要用两种正多边形地砖进行平铺,且在拼接点处不确定两种地砖的个数时,要分情况讨论, 对需要的其中一种正多边形,从自然数1开始计算,然后利用360°的周角确定其他正多边形的个数,得出的数值必须是正整数.如图,将图中相邻两行正三角形分开,添一行正方形.它表明把正三角形和正方形结合在一起也能铺满地面.正三角形、正方形、正六边形两两结合是否都能铺满地面呢?把正三角形、正方形、正六边形三者结合在一起呢?请你试试看.解:∵正三角形的每个内角为60°、正方形的每个内角为90°、正六边形的每个内角为120°,∴正三角形,正方形的内角是60°、90°,3×60°+2×90°=360°,故能铺满.正方形和正六边形的内角分别为90°、120°,显然不能构成360°的周角,故不能铺满.正三角形和正六边形内角分别为60°、120°,2×60°+2×120°=360°,故能铺满.∵正三角形的每个内角是60°,正方形的每个内角是90°,正六边形的每个内角是120o,∴60°+2×90°+120°=360°,故能铺满地面.方法总结:抓住一个拼接点,看几种不同正多边形在同一个拼接点处能否拼出360°,且角的个数都必须为正整数,满足条件的正整数就是所需多边形的个数.三、板书设计用多种正多边形铺设地面1.要铺满地面,就是所取每个正多边形的一个内角之和恰好等于周角;2.判断多种正多边形的组合能否铺满地面,需要分别求出它们的一个内角的度数,然后相加,如果和能等于360°,就能够铺满地面;反之就不能(注意同种多边形可能取多个).通过从一种正多边形拼地板的经历,探索用多种正多边形拼地板的过程和原理,结合现实世界中的美丽图案,充分感受用多种正多边形拼地板的意义,体会用多种正多边形拼地板与一种正多边形拼地板的相互关系.提高观察、分析、概括、抽象等能力,并进一步认识图形在日常生活中的应用.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-06-16 03:35:01 页数:2
价格:¥1 大小:628.54 KB
文章作者:随遇而安

推荐特供

MORE