首页

人教A版选修1-1课件2.3.2 第1课时 抛物线的简单几何性质

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/14

2/14

3/14

4/14

剩余10页未读,查看更多内容需下载

抛物线的简单几何性质 教学目标:1。掌握抛物线的简单的几何性质2。能根据抛物线方程解决简单的应用问题 结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几何性质:(1)范围(2)对称性(3)顶点类比探索x≥0,y∈R关于x轴对称,对称轴又叫抛物线的轴.抛物线和它的轴的交点. (4)离心率(5)焦半径(6)通径始终为常数1通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2P思考:通径是抛物线的焦点弦中最短的弦吗? 特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;5.抛物线标准方程中的p对抛物线开口的影响.P越大,开口越开阔 图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)x≥0y∈Rx≤0y∈Ry≥0x∈Ry≤0x∈R(0,0)x轴y轴1 例题例1.顶点在坐标原点,对称轴是坐标轴,并且过点M(2,)的抛物线有几条,求它的标准方程,当焦点在x(y)轴上,开口方向不定时,设为y2=mx(m≠0)(x2=my(m≠0)),可避免讨论例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.y2=4x焦点弦的长度变题:若抛物线的焦点为(5,0),准线方程为x=-1,求抛物线的方程 方程图形范围对称性顶点焦半径焦点弦的长度y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)lFyxOlFyxOlFyxOx≥0y∈Rx≤0y∈Rx∈Ry≥0y≤0x∈RlFyxO关于x轴对称关于x轴对称关于y轴对称关于y轴对称(0,0)(0,0)(0,0)(0,0) 练习:1.过抛物线的焦点,作倾斜角为的直线,则被抛物线截得的弦长为y2=8x2.过抛物线的焦点做倾斜角为的直线L,设L交抛物线于A,B两点,(1)求|AB|;(2)求|AB|的最小值. 例4.过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.xOyFABD yOxBA 小结:1.掌握抛物线的几何性质:范围、对称性、顶点、离心率、通径;2.会利用抛物线的几何性质求抛物线的标准方程、焦点坐标及解决其它问题;

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2023-06-15 13:25:01 页数:14
价格:¥3 大小:451.00 KB
文章作者:U-344380

推荐特供

MORE