首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
模拟考试
>
广东省汕头市金山中学2022-2023学年高三数学高考模拟试卷(Word版附解析)
广东省汕头市金山中学2022-2023学年高三数学高考模拟试卷(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/27
2
/27
剩余25页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
汕头市金山中学2023届高三年级校模数学本试卷共4页,满分150分,考试用时120分钟.注意事项:1.本试卷分选择题和非选择题两部分.答卷前,考生务必将自己的姓名、考生号、试室号、座位号填写在答题卡上.用2B铅笔将答题卡上的相应位置填涂考生号.2.回答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目的答案标号涂黑:如需要改动,用橡皮擦干净后,再选涂其他答案.答案写在试卷上无效.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需要改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保证答题卡的整洁.考试结束后,将答题卡交回.第I卷选择题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【答案】C【解析】【分析】根据一元二次不等式的解法和对数不等式的解法求解.【详解】由,解得,又因为,所以,又由,可得,解得,所以,所以,故选:C.2.已知复数z满足,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象 限【答案】B【解析】【分析】根据复数的运算可得,在根据复数的几何意义分析判断.详解】由题意可得:,所以z在复平面内对应的点为,位于第二象限.故选:B.3.已知向量,满足,,则在方向上的投影向量的模为()A.B.3C.D.【答案】B【解析】【分析】根据题意和向量数量积的运算得出,然后代入公式即可求解.【详解】因为,所以,又,所以,则在方向上的投影向量的模为,故选:B.4.如图l,在高为h的直三棱柱容器中,,,现往该容器内灌进一些水,水深为,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为(如图2),则=() A.B.C.D.【答案】A【解析】【分析】根据题意结合体积公式分析运算即可.【详解】设柱体的底面积为,则柱体的体积,注入水的体积为,容器倾斜后,上半部分三棱锥的体积,则可得,整理得.故选:A.5.某软件研发公司对某软件进行升级,主要是对软件程序中的某序列重新编辑,编辑新序列为,它的第项为,若的所有项都是,且,,则()A.B.C.D.【答案】C【解析】【分析】令,分析可知且,求出等差数列的通项公式为,可得出,再利用累加法可求得的值.【详解】令,则,所以,由题意可知,对任意的,,且,所以数列是公差为的等差数列,且,即,所以,因此.故选:C.6.立德学校于三月份开展学雷锋主题活动,某班级5名女生和2名男生,分成两个小组去两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有() 种.A.20B.4C.60D.80【答案】C【解析】【分析】根据分步乘法计数原理,先安排男生,再安排女生,在安排女生时,再利用间接法分析运算.【详解】先安排2名男生,保证每个小组都有男生,共有种分配方案;再安排5名女生,若将每个女生随机安排,共有种分配方案,若女生都在同一小组,共有种分配方案,故保证每个小组都有女生,共有种分配方案;所以共有种分配方案.故选:C.7.已知是定义在R上的奇函数,当时,,若函数是偶函数,则下列结论不正确的为()A.B.的最小正周期C.有4个零点D.【答案】D【解析】【分析】对于A:根据奇函数性质运算求解;对于B:根据对称性和奇偶性分析可得,进而可得周期性;对于C:分别作出图象,结合图象分析判断;对于D:根据题意结合函数性质分析运算.【详解】对于A:由题意可得:,解得,故A正确;对于B:∵是偶函数,则,则,又∵为奇函数,则,可得,∴,则的最小正周期,故B正确;对C:令,则,注意到此时,分别作出的图象, 由图象可知:有4个交点,故有4个零点,故C正确;对D:∵,则,可得,故D不正确.故选:D.8.已知双曲线的右焦点为F,过点F且斜率为的直线l交双曲线于A、B两点,线段AB的中垂线交x轴于点D.若,则双曲线的离心率取值范围是()A.B.C.D.【答案】A【解析】【分析】根据题意利用韦达定理求以及线段AB的中垂线的方程,进而可求点D和,结合运算求解即可.【详解】设双曲线的右焦点为,则直线,联立方程,消去y得:,则可得,则, 设线段的中点,则,即,且,线段的中垂线的斜率为,则线段的中垂线所在直线方程为,令,则,解得,即,则,由题意可得:,即,整理得,则,注意到双曲线的离心率,∴双曲线的离心率取值范围是.故选:A.【点睛】方法定睛:双曲线离心率(离心率范围)的求法求双曲线的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求的值(或范围).二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.每年4月23日为“世界读书日”,树人学校于四月份开展“书香润泽校园,阅读提升思想”主题活动,为检验活动效果,学校收集当年二至六月借阅数据如下表:月份二月三月四月五月六月月份代码xl2345 月借阅量y(百册)4.95.15.55.75.8根据上表,可得y关于x的经验回归方程为,则()A.B.借阅量4.9,5.1,5.5,5.7,5.8的上四分位数为5.7C.y与x的线性相关系数D.七月的借阅量一定不少于6.12万册【答案】ABC【解析】【分析】对于A:根据回归方程必过样本中心点分析运算;对于B:根据百分位的定义分析运算;对于C:根据相关系数的概念分析理解;对于D:取,代入回归直线分析运算.【详解】对于A:因为,,所以,得,所以A正确;对于B:因为5×75%=3.75,所以借阅量4.9,5.1,5.5,5.7,5.8的上四分位数为5.7,所以B正确;对于C:因为,所以y与x的线性相关系数,所以C正确;对于D:由选项A可知线性回归方程为,当,则,所以七月的借阅量约为6.12百册,所以D错误;故选:ABC.10.已知,下列选项正确的是()A.的值域为B.的对称中心为C.的单调递增区间为和D.图像向右平移个单位与的图像重合【答案】ABD【解析】 【分析】利用三角恒等变换化简整理得,结合三角函数性质以及图象变换逐项分析判断.【详解】由题意可得:,对于A:因为,所以,故A正确;对于B:因为的对称中心与函数的对称中心相同,令,解得,故的对称中心为,故B正确;对于C:若单调递增,则单调递减,令,解得,所以的单调递增区间为和,故C错误;对于D:图像向右平移个单位,得到,与解析式相同,图像重合,故D正确. 故选:ABD.11.如图,点M是棱长为l的正方体中的侧面上的一个动点(包含边界),则下列结论正确的是()A.不存在点M满足平面B.存在无数个点M满足C.当点M满足时,平面截正方体所得截面的面积为D.满足的点M的轨迹长度是【答案】BCD【解析】【分析】对于A:根据线面垂直关系可得,分析判断;对于B:根据线面垂直关系可得,分析判断;对于C:根据平行线的性质以及利用空间向量分析运算求截面,进而可求截面面积;对于D:利用空间向量求点M的轨迹,进而求点M的轨迹长度.【详解】对于选项A:连接,因为四边形ABCD是正方形,所以,∵,且平面,所以,,平面,所以平面,且平面,可得,同理可证,,平面,所以,又点M是面上的一个动点(包含边界),所以当M与A1重合时,故A错误; 对于选项B:连接,,,则,又因为,,,所以,可知当M在线段上时,有故存在无数个点满足,故B正确;对于选项C:延长交于点,∵,则为线段靠近点的三等分点,且,则,则为线段的中点,如图,以D点为原点建立空间直角坐标系,则,可得,设平面的法向量为,则,令,则,即,设平面,点,则,则,解得, 则,故,可得,即,且,故截面面积,故C正确;对于选项D:因为正方体的棱长为l,所以设所以,,因为,所以化简得:,所以点M的轨迹是一段以为圆心,半径为的圆弧,设圆弧与分别交于点,取,则,即;取,则,即;则,则,且,即,∴轨迹长度是,故D正确. 故选:BCD.12.已知,若分别是方程和的根,则下列说法正确的是()A.B.C.D.【答案】ACD【解析】【分析】通过验证函数对称性,可得到图象关于对称,作出、与的图象,设,,结合图象,通过说明可得的范围,知A正确;由对称性可确定,代入整理可得B错误;根据、可得的范围,结合可知C正确;利用基本不等式,根据取等条件不成立可知D正确.【详解】,,的图象是由的图象向右平移一个单位,再向上平移一个单位得到,在上单调递减;设点是上的一点,则,,,即也是上的点,图象关于直线对称,由得:, 又与图象关于对称,则可作出,与图象如下图所示,对于A,当时,,设,则,,,,,即,,即;与的交点横坐标落在区间中,即,,A正确;对于B,分别是方程和的根,设,与图象的交点为,与图象的交点为,又图象关于直线对称,与关于直线对称,或,整理可得:,,B错误;对于C,当时,,,则;当时,,,由A知:,;与图象交点的横坐标落在区间中,即,又,,C正确;对于D,是方程的根,则, (当且仅当,即时取等号),由C知:,等号不成立,即,D正确.故选:ACD.【点睛】关键点点睛:本题考查与方程的根有关的取值范围问题的求解,本题求解的关键是能够说明图象关于对称,进而确定其与的交点也关于对称,利用对称关系可得满足的关系式.第Ⅱ卷非选择题三、填空题:本题共4小题,每小题5分,共20分.13.二项式的二项式系数之和为64,则展开式中的的系数是_________.(填数字)【答案】【解析】【分析】先根据展开式的二项式系数之和为64求出的值,再利用二项式展开式的通项公式求解即可.【详解】因为二项式的二项式系数之和为64,所以,,所以展开式的通项为,令,则,所以展开式中的的系数是.故答案为:.14.已知为锐角,,,则______【答案】【解析】【分析】利用同角三角函数的基本关系和两角差的正弦公式求解即可. 【详解】因为为锐角,且,所以所以联立,解得,,,故答案为:.15.已知点P是椭圆上一点,椭圆C在点P处的切线l与圆交于A,B两点,当三角形AOB的面积取最大值时,切线l的斜率等于_______【答案】【解析】【分析】根据面积公式分析可得当是等腰三角形,面积最大,此时点O到切线l的距离等于.解法一:设切线l的方程,根据点到直线的距离和直线与椭圆相切分别可得,求解即可;解法二:设点P的坐标为,切线l的方程为,结合点到直线的距离公式运算求解.【详解】∵圆的圆心,半径,设,则,当且仅当,即时,等号成立,当时,是等腰三角形,此时点O到切线l的距离等于. 解法一:设切线l的方程为,即,则有,整理得:联立方程,消去y得:,由相切得:整理得:由①②得:,解得.解法二:设点P的坐标为,切线l的方程为,即则有,整理得,∵点P在椭圆上,则,则,解得,所以切线l斜率.故答案为:.16.已知四边形ABCD为平行四边形,,,,现将沿直线BD翻折,得到三棱锥,若,则三棱锥的内切球与外接球表面积的比值为_________.【答案】【解析】【分析】根据题意利用余弦定理求得,由此三棱锥的对棱相等,故此三棱锥的三组对棱是一个长方体的六个面的对角线,利用长方体的性质求外接圆半径,再等体积法求出内切球半径,运算求解即可. 【详解】在中,,故,即,则折成的三棱锥中,,,,即此三棱锥的对棱相等,故此三棱锥的三组对棱是一个长方体的六个面的对角线,设长方体从同一个顶点出发的三条棱长分别为a,b,c则,解得,此长方体的外接球是三棱锥的外接球,设外接球的直径,即,又因为三棱锥是长方体切掉四个角,故三棱锥,三棱锥四个侧面是全等的,,设内切球半径为,以内切球球心为顶点,把三棱锥分割为以球心为顶点,四个面为底面的的四个小三棱锥,四个小三棱锥体积等于大三棱锥的体积,故,则三棱锥的内切球与外接球表面积的比值为.故答案为:.【点睛】方法定睛:多面体与球切、接问题的求解方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P、A、B、C构成的三条线段PA、PB、PC两两垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)正方体的内切球的直径为正方体的棱长.(4)球和正方体的棱相切时,球的直径为正方体的面对角线长.(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.四、解答题:本大题共6小题,共70分.第17题为10分,其他为12分,解答应写出文字说明、证明过程或演算步骤.17.已知数列的前n项和为,,且.(1)求的通项公式;(2)已知,求数列的前n项和.【答案】(1)(2)【解析】【分析】(1)根据前n项和与通项之间的关系分析可得,结合等比数列求其通项公式;(2)结合(1)求,分奇偶项,利用分组求和的方法求和即可.【小问1详解】∵,则有:当时,,解得;当时,则,两式相减得,即;注意到,故,∴是首项为3,公比为3的等比数列, 故.【小问2详解】由(1)得,当n为偶数时,;当n为奇数时;综上所述:.18.在锐角中,角A,B,C所对应的边分别为a,b,c,已知.(1)求角A的值;(2)若,求的取值范围.【答案】(1)(2)【解析】【分析】(1)根据正弦定理得到,再利用余弦定理运算求解;(2)根据正弦定理得到,从而得到,根据题意结合角C的取值范围运算求解.【小问1详解】由正弦定理得:,整理得:,由余弦定理得:, ∵,则.【小问2详解】由(1)可得:,且,锐角中,由正弦定理得:,可得,则,∵锐角三角形,且,则,即,解得,即,且,可得,则,故的范围是.19.安全教育越来越受到社会的关注和重视.为了普及安全教育,学校组织了一次学生安全知识竞赛,学校设置项目A“地震逃生知识问答”和项目B“火灾逃生知识问答”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.每一个比赛项目均采取五局三胜制(即有一方先胜3局即获胜,比赛结束),假设在项目A中甲班每一局获胜的概率为,在项目B中甲班每一局获胜的概率为,且每一局之间没有影响.(1)求乙班在项目A中获胜的概率; (2)设乙班获胜的项目个数为X.求X的分布列及数学期望.【答案】(1)(2)分布列见解析,【解析】【分析】(1)由对立事件概率公式求得乙班在项目A中每局获胜的概率,然后分成乙班三局全胜,四局三胜和五局三胜三个互斥事件求出概率;(2)与(1)同理求得乙班在项目中获胜的概率,而的可能值是0,1,2,利用独立事件、对立事件概率公式求得概率得分布列,再由期望公式求得期望.【小问1详解】记“乙班在项目A中获胜”为事件A,由事件的对立性知,乙班在项目A中每局获胜的概率为,负的概率为,则,所以乙班在项目A中获胜的概率为;【小问2详解】记“乙班在项目B中获胜”为事件B,则,X的可能取值为0,1,2,由事件对立性和独立性知,则,,.所以X的分布列为X0l2P 所以乙班获胜的项目个数的数学期望为20.如图,在三棱台中,面,,(1)证明:;(2)若棱台体积为,,求二面角的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)建立合适的空间直角坐标系,利用空间向量证明,则;(2)利用棱台体积公式得到上下底面三角形的相似比,写出相关点坐标,求出相关平面的法向量,最后利用二面角公式即可求出其余弦值.【小问1详解】在平面中过点作的垂线,在平面ABC中过点作的垂线,面面,,面,且面面,故面, 面,所以,故,,三条两两垂直,建立以点为坐标原点,直线,,分别为,,轴的空间直角坐标系,如图所示,则由题意得,,即,,.【小问2详解】设,,根据,则,由棱台体积公式得,所以,则在(1)问建系基础上,设面的法向量由,即,取,则,则,由题意得,根据,则,则,设面法向量 由,即,取,则,,则,设二面角的大小为,依图可知,所以,所以二面角的余弦值为.21.在平面直角坐标系xOy中,点P到点的距离比到y轴的距离大l,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)过点F且斜率为的直线l交椭圆于A,B两点,交曲线C于M、N两点,若为定值,则实数应满足什么关系?【答案】(1)(2)【解析】【分析】(1)设,根据题意列式运算即可;(2)分别联立方程结合韦达定理求,代入整理可得,结合定值分析运算.【小问1详解】设,由题意可得两边平方并整理,得,故曲线C的方程为.【小问2详解】设,,,, 由题意可得直线l的方程为,与椭圆E的方程联立,得,则,,可得,∵,若直线l交曲线C于M、N两点,且,则直线l与相交,直线l的方程与曲线C的方程联立,得,则,,可得:,∴,要使为定值,则,即故当为定值时,实数应满足【点睛】方法定睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.22.已知函数,,其中且.(1)证明:当时,恒成立;(2)证明:当时,曲线与曲线有且只有两条公切线.【答案】(1)证明见解析 (2)证明见解析【解析】【分析】(1)分析可得等价于即,构建,结合导数证明即可;(2)根据导数的几何意义分析可得,构建,利用导数证明在上有且只有两个零点即可.【小问1详解】当时,,即,等价于即,构建,则,令,解得;令,解得;则在上单调递减,在上单调递增,可得,即,当且仅当时,等号成立;可得,则,当且仅当时,即时,等号成立;可得,则,当且仅当,即时,等号成立;综上所述:.但等号不同时取到,故,∴,原式得证.【小问2详解】由题意可得:,,设直线l与相切于点,则切线斜率,直线l与相切于点,则切线斜率,则,整理得, 由题意可得:,消去可得:,令,则,则,可得,令,要证两函数有且只有两条公切线,即证在上有且只有两个零点.且,令,则,可得在定义域内单调递增,且,故在上有唯一零点,且,∴当时,,当时,,则在上单调递减,在上单调递增,可知的最小值为,又∵,则,注意到趋近0时,趋近,趋近时,趋近,∴在和上分别存在一个零点,故有且只有两个零点,故原命题得证.【点睛】方法定睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
广东省汕头市金山中学2022-2023学年高三语文上学期第二次月考试卷(Word版含解析)
广东省汕头市金山中学2023届高三语文上学期摸底考试试卷(Word版含解析)
广东省汕头市金山中学2022-2023学年高三化学上学期第二次月考试题(Word版附答案)
广东省汕头市金山中学2022-2023学年高三政治上学期第二次月考试题(Word版附解析)
广东省汕头市金山中学2023届高三政治上学期摸底考试试题(Word版附解析)
广东省汕头市金山中学2022-2023学年高三语文上学期第二次月考试卷(Word版附解析)
广东省汕头市金山中学2022-2023学年高三语文上学期摸底检测试卷(Word版附解析)
广东省汕头市金山中学2021-2022学年高三政治上学期期末试卷(Word版附解析)
广东省汕头市金山中学2023届高三语文下学期一模试题(Word版附解析)
广东省汕头市金山中学2023届高三数学下学期一模试题(Word版附解析)
文档下载
收藏
所属:
高考 - 模拟考试
发布时间:2023-04-27 22:50:03
页数:27
价格:¥3
大小:1.53 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划